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Introduction

1. Well… they’re everywhere!
!

2. They occur on a vast range of scales (from 10^5 to  greater than 10^11 km)!
!
3. They can be composed of a diversity of stuff (dust, ice balls, poorly ionised 
gas to collisionless plasma), and involve a vast range of different physics

Why study accretion disks?



Introduction

1. Well… they’re everywhere!
!

2. They occur on a vast range of scales (from 10^5 to  greater than 10^11 km)!
!
3. They can be composed of a diversity of stuff (dust, ice balls, poorly ionised 
gas to collisionless plasma), and involve a vast range of different physics

Why study accretion disks?

  4. They’re implicated in several essential astrophysical processes:!
• star formation!
• planet and moon formation!
• high energy phenomena !
• physics of galaxies, the ISM, and beyond



Survey of Astrophysical !
Accretion Disks



Planetary rings

Galileo (1610): “I have seen the most distant !
planet to have a triple form"



Planetary rings

Huygens (1656): “It is surrounded by a thin flat ring, !
nowhere touching, and inclined to the ecliptic”

(Sketches by Huygens) 



Planetary rings

Daphnis in the Keeler gap (Cassini)

Saturn’s rings (Cassini)



Planetary rings

The Jovian main (dusty) ring (New Horizons)

Uranus’s rings (Keck)Daphnis in the Keeler gap (Cassini)

Saturn’s rings (Cassini)



Planetary rings: properties
!
• Radius: 140,000 km, for Saturn’s rings!
• Thickness: ~10 m !
• Collide infrequently (a few times per orbit)!
• Mean free path ~ disk thickness!
• Composed of (water) ice balls mm to several m!
• Theoretical approaches: dense gas (Enskog) kinetic theory, viscous hydro….!
!
!

[Credit: Ron Williams, Black Cat Studios]



Protoplanetary disks 

(Credit: Andrea Isella)



Protoplanetary disks 

(Credit: Andrea Isella)
!

(Mann+ 2014)

!
(Hubble)



Protoplanetary disks 
(Credit: !

Quanta Magazine)



Protoplanetary disks 
(Credit: !

Quanta Magazine)

The jet of HH 47 (Hubble)



Protoplanetary disks: properties 
• Radius: 10-1000 AU!
• Thickness: ~0.05*radius!
• Lifetime ~ 1-10 million years!
• collision frequency >> local orbital frequency!
• Temperatures: a few 1000K at inner radii to 50K further out!
• Composed primarily of molecular hydrogen, but dust important !
• Weakly ionised: coming from stellar X-rays and FUV, and cosmic rays!
• Theoretical approaches: hydrodynamics, non-ideal MHD!
!

[Credit: Detlev van Ravenswaay]



Dwarf novae Discs in the Universe

Disc: (continuous) medium in orbit around a massive central body

Observations: Dwarf Novae

Luminosity variability (orbital time)

IY UMa

Luminosity variability (orbital time)

Eclipse of white dwarf!
by secondary

Rotation of hot spot

[Credit: NASA]

Patterson+ (2000).



Dwarf novae 
Discs in the Universe

Disc: (continuous) medium in orbit around a massive central body

Observations: Dwarf Novae

Outbursts (days-weeks)

SS Aur [Credit: NASA]

[Credit: AAVSO]



(Low mass) X-ray binaries 
Discs in the Universe

Disc: (continuous) medium in orbit around a massive central body

Observations: binary star discs

X-ray variability: Outbursts (years)

Accretion flows in XRB 19

Fig. 9 The left hand panel shows a selection of states taken from the 2005 outburst
of GRO J1655–40. The right hand panel shows the proposed accretion flow changes
to explain these different spectra, with differing contributions from the disc, hot
inner flow and its associated jet, active regions above the disc and a wind.

the hard state is seen at lower luminosities. Comprehensive reviews of the
observational properties of these spectral states are given by e.g. Tanaka &
Lewin (1995) and Remillard & McClintock (2006).

Thus while we have two theoretical stable accretion flow models, a disc
and an optically thin, hot (messy) flow, there are (at least) three different
types of spectra to explain. As outlined in Section 3.4, the hot flows plus
a truncated disc can generically match the hard state properties (see also
Section 4.1), while the spectra seen at high L/LEdd show clear signs of be-
ing dominated by the disc. At these high luminosities the disc is likely to
extend down to the last stable orbit (see Section 5), but even the soft-state
spectra are always accompanied by a high-energy tail. This shows that there
must be some sort of optically thin dissipation which can co-exist with the
majority of the accretion flow being in the form of a disc. This could be due
to some small fraction of the flow in a state analogous to the hot, optically
thin (messy) flow seen in the hard state, but with properties modified by the
strong Compton cooling (Esin 1997; Janiuk, Życki & Czerny 2000) and ther-
mal conduction (Różańska & Czerny 2000; Liu, Meyer & Meyer-Hofmeister
2005). There are also alternatives to these smooth flows in models where the
energy dissipation is instead inherently very inhomogeneous, perhaps due to
magnetic reconnection of flux tubes rising to the surface of the disc, as was
first suggested by Galeev, Rosner & Vaiana (1979), and finds some support
in the inherently variable (in both space and time) dissipation produced by
the MRI (e.g. Hawley & Balbus 2002).

One way to put all these mechanisms together into a plausible model for
all the spectral states is sketched in Fig. 9b, similar to that first proposed
by Esin et al. (1997). In the sections below we will outline how this model
works to explain the observed spectra of each state. We discuss alternatives
to the truncated disc in Section 4.2.

Possible states of the inner!
accretion disk during!

the outburst cycle

[Credit: ESO, L. Calcada]

Light curve of black hole binary GX 339-4

Corbel+ 2013

Done+ 2007



Close binaries: properties
• Outer radius ~ 500,000 km!
• Inner radius ~ 10,000 km (dwarf nova), < 100 km (XRB)!
• Thickness: ~0.01*radius!
• collision frequency >> local orbital frequency generally !
• Temperatures, a few 10^3 K (quiescence) to >10^6 K (outburst) generally!
• Composed primarily of molecular hydrogen in quiescence, and ionised!
hydrogen in outburst!
• Theoretical approaches: MHD (relativistic if needed)



Close binaries: properties
• Outer radius ~ 500,000 km!
• Inner radius ~ 10,000 km (dwarf nova), < 100 km (XRB)!
• Thickness: ~0.01*radius!
• collision frequency >> local orbital frequency generally !
• Temperatures, a few 10^3 K (quiescence) to >10^6 K (outburst) generally!
• Composed primarily of molecular hydrogen in quiescence, and ionised!
hydrogen in outburst!
• Theoretical approaches: MHD (relativistic if needed)

• However: X-ray binaries in the inner radii of XBs during quiescence (i.e. 
low/hard state) are radically different:!

• collision frequency << local orbital frequency !
• Larmor radius << mfp ~ radius !
• Electron temperature ~ 10^9 K …. ion temperature ~ 10^12 K !!
• Theoretical approach: extended MHD, plasma physics



Galactic Nuclei

M87 (Event Horizon Telescope)

M87’s jet!
 (Hubble)



Active Galactic Nuclei: properties
• Inner radius ~ innermost circular stable orbit ~ 1-100 AU!
• Outer radius of disk ~ 1000 r_g ??? Beyond that the BLR…!
• Thickness: ~0.001*radius!
• collision frequency >> local orbital frequency generally !
• Temperatures, a few 10^3 K to 10^5 K generally!
• Well ionised thermally or by radiation!
• Theoretical approaches: hydrodynamics, non-ideal MHD!
!
• However, low luminosity nuclei (Sgr A*) may be similar to quiescent XBs:!

• extremely hot, and weakly collisional at best



Basic Disk Physics



Basic Physics
• The ubiquity of disks may come down to:!

• gravitational attraction!
• angular momentum conservation



Basic Physics
Discs in the Universe

Disc: (continuous) medium in orbit around a massive central body

Formation:

slowly rotating

rapidly rotating centrifugally

supported

Gravitational
force

Centrifugal force

• The ubiquity of disks may come down to:!
• gravitational attraction!
• angular momentum conservation

(credit: G. Ogilvie)



Basic Physics
Discs in the Universe

Disc: (continuous) medium in orbit around a massive central body

Formation:

slowly rotating

rapidly rotating centrifugally

supported

Gravitational
force

Centrifugal force

• The ubiquity of disks may come down to:!
• gravitational attraction!
• angular momentum conservation

• The flattening tendency is resisted by pressure!
• the colder/more dissipative the system, the ‘flatter’!

(credit: G. Ogilvie)



Basic Physics

Discs in the Universe

Disc: (continuous) medium in orbit around a massive central body

Formation:

•Orbital ang. 
mom. binary much 
larger than ang. 
mom. gas close to 
black hole

• On the other hand, in binary systems, gas from the donor star has too much 
angular momentum to just fall straight on to the secondary

[Credit: NASA]



Basic Physics
• Gas settles down into!

differential rotation

Discs in the Universe

Disc: (continuous) medium in orbit around a massive central body

• Usually circular, thin

• Usually Keplerian

• Celestial mechanics

• Fluid mechanics

(credit: G. Ogilvie)



Basic Physics
• Gas settles down into!

differential rotation

Discs in the Universe

Disc: (continuous) medium in orbit around a massive central body

• Usually circular, thin

• Usually Keplerian

• Celestial mechanics

• Fluid mechanics

• But if that were all, the gas 
will just orbit happily and  

nothing will happen:!

❖ No star formation!
❖ No black hole growth!
❖ No stunning luminosity!
❖ No jets

(credit: G. Ogilvie)



Basic Physics
• Gas settles down into!

differential rotation

Discs in the Universe

Disc: (continuous) medium in orbit around a massive central body

• Usually circular, thin

• Usually Keplerian

• Celestial mechanics

• Fluid mechanics

• But if that were all, the gas 
will just orbit happily and  

nothing will happen:!

❖ No star formation!
❖ No black hole growth!
❖ No stunning luminosity!
❖ No jets

BORING

(credit: G. Ogilvie)



Basic Physics: accretion

• We need accretion: !

Discs in the Universe

Disc: (continuous) medium in orbit around a massive central body

• Usually circular, thin

• Usually Keplerian

• Celestial mechanics

• Fluid mechanics

• It accretes!

Angular 
momentum

Mass

• This means there must be !
angular moment transport

(credit: G. Ogilvie)



Basic Physics: accretion

• We need accretion: !
!

Discs in the Universe

Disc: (continuous) medium in orbit around a massive central body

• Usually circular, thin

• Usually Keplerian

• Celestial mechanics

• Fluid mechanics

• It accretes!

Angular 
momentum

Mass

• This means there must be !
angular moment transport

• It also means that there!
must be energy liberation

• This energy goes first into heat!
and then possibly into light(credit: G. Ogilvie)



Basic Physics: ang. momentum
• Consider the ‘angular momentum problem’ in star formation

The ‘Up Yours’ molecular cloud 
in the Carina nebula (Hubble)

Cartoon of star formation !
(Greene, American Scientist, Jul-Aug 2001)



Basic Physics: ang. momentum
• Consider the ‘angular momentum problem’ in star formation
• a dense core in the ISM collapses into a star. !
Lc = ang. mom. of the core Ls = ang. mom. of the star
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Basic Physics: ang. momentum
• Consider the ‘angular momentum problem’ in star formation
• a dense core in the ISM collapses into a star. !

A LOT of angular momentum has had to be redistributed for the star to form!

Lc = ang. mom. of the core Ls = ang. mom. of the star

Ls

Lc
=
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Rs
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Basic Physics: energy
• Accretion of mass can liberate a lot of energy. 

(Science fictional rendering of a luminous quasar: ESO, M. Kornmesser)



Basic Physics: energy
• Accretion of mass can liberate a lot of energy. 
• Consider accretion of a fluid blob of mass m from infinity on to a massive body 

of mass M and radius R:

Eacc = accretion energy ⇠ mMG

R
=

✓
Rgrav

R

◆
mc2

Rgrav ⇠ GM

c2
⇠ 10 km (for stellar masses)



Basic Physics: energy
• Accretion of mass can liberate a lot of energy. 

• Thus energy liberated depends on how compact the central object!
• Neutron star, black hole:                       Therefore a significant proportion!
of the rest mass can be converted into energy!!

• Consider accretion of a fluid blob of mass m from infinity on to a massive body 
of mass M and radius R:

R & Rgrav

Eacc = accretion energy ⇠ mMG

R
=

✓
Rgrav

R

◆
mc2

Rgrav ⇠ GM

c2
⇠ 10 km (for stellar masses)



Basic Physics: energy
• Accretion of mass can liberate a lot of energy. 

• Thus energy liberated depends on how compact the central object!
• Neutron star, black hole:                       Therefore a significant proportion!
of the rest mass can be converted into energy!!

• Consider accretion of a fluid blob of mass m from infinity on to a massive body 
of mass M and radius R:

• Explains why accreting neutron stars and black holes are so 
luminous

R & Rgrav

Eacc = accretion energy ⇠ mMG

R
=

✓
Rgrav

R

◆
mc2

Rgrav ⇠ GM

c2
⇠ 10 km (for stellar masses)



Basic Physics: accretion
• Okay, but what process is doing this angular momentum transport?!

• a frictional force, like viscosity?!
• magnetic fields…?
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Basic Physics: accretion
• Okay, but what process is doing this angular momentum transport?!

• a frictional force, like viscosity?!
• magnetic fields…?

• How about molecular viscosity?!
• In protoplanetary disks:

• What about turbulent viscosity?
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⌫turb ⇠ vturblturb < cs H (where H is disk thickness)



Basic Physics: accretion
• Okay, but what process is doing this angular momentum transport?!

• a frictional force, like viscosity?!
• magnetic fields…?

• How about molecular viscosity?!
• In protoplanetary disks:

• What about turbulent viscosity?

• So this gives us the “alpha prescription” (Shakura and Sunyaev 1973)!
  ! !
!
Observations indicate that alpha lies between 10^-4 and 0.1

⌫ ⇠ 10

4
m

2
s

�1 ! accretion timescale ⇠ R2
disk/⌫ ⇠ 10

14
years

⌫turb = ↵csH

⌫turb ⇠ vturblturb < cs H (where H is disk thickness)



Basic Physics: accretion

• So now the questions are:!
!

•  what causes turbulence in accretion disks?!
!

• why does alpha take the value it does in different 
scenarios?!



Instabilities



Instabilities: hydro
• Consider a very “vanilla” model of an accretion disk:!

• no thermodynamic gradients!
• incompressible!
• hydrodynamic



Instabilities: hydro
• Consider a very “vanilla” model of an accretion disk:!

• no thermodynamic gradients!
• incompressible!
• hydrodynamic

Les Houches, March 2011

Linear hydrodynamic stability

• Rayleigh criterion: centrifugal instability (axisymmetric)

• requires a radially decreasing angular momentum profile

• Taylor vortices in Taylor-Couette flow

• Important cases

• No rotation (RΩ=0, infinite q)

• Cst ang. momentum (RΩ=-1, q=2)

• Keplerian flow is stable                                                                                        

(RΩ=-4/3, q=3/2) RΩ
0-1-4/3

Linearly 
UNSTABLE

Anticyclonic

C
yclo

n
ic

-

27

−1 < RΩ < 0

d (�R2)
dR

< 0

• Linear stability controlled by Rayleigh’s criterion:

• Disks have rotation profiles that are (linearly) STABLE



Instabilities: hydro
• What about ‘nonlinear instability’, as in pipe and plane 

Couette flow?!
• Reynolds numbers in disks ~ 10^10 

Subcritical shear instabilities 
Origins

The Facts:  

keplerian shear flows are linearly stable 

Huge reynolds numbers      nonlinear instability? (same thing as pipe flows or Couette flows)

!21

pipe flow couette flow
A nonlinear instability in accretion discs? 

Experimental approach: hard to «do» a disc in a lab. Boundary conditions? 

Numerical approach: high reynolds numbers unreachable.

Ideal Taylor-
Couette

Real life  
Couette-Taylor  
(Schartman et 

al. 2012)

A&A 543, A94 (2012)
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Fig. 2. A) The Princeton MRI Experiment is a
Taylor-Couette apparatus in which the end caps
of the vessel have been divided in to two pairs
of nested, independently rotatable end rings.
B) The primary diagnostic of the fluid veloc-
ity is laser Doppler velocimetry (LDV). Radial
profiles of vθ are acquired with the diagnostic
viewing the fluid from the side. In the axial
orientation two components of velocity vθ and
vr are measured. Simultaneous measurement of
the two velocities gives a direct measure of the
r − θ component of the Reynolds stress. Due to
very low data rates, the Reynolds stress is mea-
sured primarily at one point.

the ratio of gap width to the average radius r̄ = (r1 + r2)/2,
∆r/r̄ > 1/20, Rec increases like (∆r/r̄)2. In this regime Richard
and Zahn rewrite the critical Reynolds number in terms of the
angular velocity gradient and arrive at an instability condition:

Rec =
r̄3

ν

∆Ω

∆r

(
∆r
r̄

)2

≥ 6 × 105
(
∆r
r̄

)2

· (7)

(We note that this prescription implies that the relevant length
scale is r̄ rather than other length scales, ∆r or h, an assumption
which may not be justified. See Sect. 5 for more discussion.)

By this prescription, Richard (2001) should expect a turbu-
lent transition at Rec ≈ 7 × 104 for the radius ratio ∆r/r̄ = 0.35.
In the cyclonic experiments, a transition was observed at Re =
3 × 104. However, the estimate for Rec does not carry over to
the anti-cyclonic experiment where a transition was observed
at Re ≈ 3 × 103. Also absent from the discussion leading to
this equation is an estimate of the perturbation amplitudes which
triggered the transitions in the experiments of Wendt and Taylor.

Torque measurements in the turbulent regime suggest to
Richard and Zahn that the turbulent viscosity, νt, is a diffusive
process and choose for it the form νt = αr̄∆Ω∆r, α is a constant.
Finally, using the observed approximate scaling of α with gap
width, Richard & Zahn conclude that the local value for νt be-
comes independent of the gap width (for large enough gaps) and
is determined only by the local shear:

νt = β

∣∣∣∣∣r
3 ∂Ω

∂r

∣∣∣∣∣ · (8)

The flux of angular momentum is then given by

ρr2⟨v′rv′θ⟩ = −ρνtr3 ∂Ω

∂r
, (9)

which can be rewritten in terms of q:

β = −⟨v′rv′θ⟩/q2v2θ . (10)

Thus, β can be directly determined through measurements of
the Reynolds stress. Finally, we comment on a particular case
where ⟨vθ⟩ satisfies the ideal Couette solution (Eq. (5)) with
negligible ⟨vr⟩ and axial dependences. In such a case, Eq. (6)
reduces to

1
r2

∂(r2⟨v′rv′θ⟩)
∂r

= 0 (11)

where the specific angular momentum flux, r2⟨v′rv′θ⟩ [=νtr3qΩ =
β(r3qΩ)2], is a spatial constant. This is especially convenient
when diagnostic access for Reynolds stress measurements are
limited to certain locations. The Reynolds stress at other loca-
tions can be inferred.

3. Experiment

The Princeton MRI Experiment is a novel Taylor-Couette appa-
ratus (Tagg 1994). The working fluid is confined between con-
centric, corotating cylinders which are bounded vertically by
two pairs of nested, differentially rotating end rings (Burin et al.
2006; Schartman et al. 2009), Fig. 2. The experiment was de-
signed to produce quasi-Keplerian flows of a liquid gallium al-
loy, GaInSn (Morley et al. 2008) which would become unstable
to the MRI in the presence of an applied solenoidal magnetic
field (Ji et al. 2001). To minimize the volume of GaInSn required
for the MRI studies, the height of the cylinders is only twice the
gap width between them, h/∆r = h/ (r2 − r1) ≈ 2. This aspect
ratio is small in comparison with other Taylor-Couette experi-
ments which aim to minimize the influence of the end caps by
separating them as much as possible. For example, Taylor (1936)
used h/∆r > 100. Further details of the design and implementa-
tion of the apparatus and diagnostics can be found in Schartman
et al. (2009).

3.1. Apparatus

The experiment outer cylinder is a pressure vessel into which the
inner cylinder and end rings are submerged. The outer cylinder is
a 25.4 mm thick annulus of cast acrylic capped by two 101.6 mm
thick acrylic disks. The inner cylinder and end rings are mounted
to nested stainless steel axles which pass through the top cap of
the outer cylinder. The rings are acrylic. The lower rings and
outer cylinder cap were polished to allow optical diagnostic ac-
cess to the fluid. The inner cylinder is stainless steel and was
painted black to reduce reflections which would interfere with
the velocity measurement (Table 1). A lip seal is mounted at the
top end of each axle to seal against its inner neighbor. The sub-
merged, lower, end of each component is fixed radially by a plain
bearing.

The hydrodynamic experiments reported here use water or a
water-glycerol mix as the working fluid. The kinematic viscosity

A94, page 4 of 13
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the ratio of gap width to the average radius r̄ = (r1 + r2)/2,
∆r/r̄ > 1/20, Rec increases like (∆r/r̄)2. In this regime Richard
and Zahn rewrite the critical Reynolds number in terms of the
angular velocity gradient and arrive at an instability condition:
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(We note that this prescription implies that the relevant length
scale is r̄ rather than other length scales, ∆r or h, an assumption
which may not be justified. See Sect. 5 for more discussion.)

By this prescription, Richard (2001) should expect a turbu-
lent transition at Rec ≈ 7 × 104 for the radius ratio ∆r/r̄ = 0.35.
In the cyclonic experiments, a transition was observed at Re =
3 × 104. However, the estimate for Rec does not carry over to
the anti-cyclonic experiment where a transition was observed
at Re ≈ 3 × 103. Also absent from the discussion leading to
this equation is an estimate of the perturbation amplitudes which
triggered the transitions in the experiments of Wendt and Taylor.

Torque measurements in the turbulent regime suggest to
Richard and Zahn that the turbulent viscosity, νt, is a diffusive
process and choose for it the form νt = αr̄∆Ω∆r, α is a constant.
Finally, using the observed approximate scaling of α with gap
width, Richard & Zahn conclude that the local value for νt be-
comes independent of the gap width (for large enough gaps) and
is determined only by the local shear:

νt = β
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∣∣∣∣∣ · (8)

The flux of angular momentum is then given by

ρr2⟨v′rv′θ⟩ = −ρνtr3 ∂Ω
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, (9)

which can be rewritten in terms of q:

β = −⟨v′rv′θ⟩/q2v2θ . (10)

Thus, β can be directly determined through measurements of
the Reynolds stress. Finally, we comment on a particular case
where ⟨vθ⟩ satisfies the ideal Couette solution (Eq. (5)) with
negligible ⟨vr⟩ and axial dependences. In such a case, Eq. (6)
reduces to

1
r2
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= 0 (11)

where the specific angular momentum flux, r2⟨v′rv′θ⟩ [=νtr3qΩ =
β(r3qΩ)2], is a spatial constant. This is especially convenient
when diagnostic access for Reynolds stress measurements are
limited to certain locations. The Reynolds stress at other loca-
tions can be inferred.

3. Experiment

The Princeton MRI Experiment is a novel Taylor-Couette appa-
ratus (Tagg 1994). The working fluid is confined between con-
centric, corotating cylinders which are bounded vertically by
two pairs of nested, differentially rotating end rings (Burin et al.
2006; Schartman et al. 2009), Fig. 2. The experiment was de-
signed to produce quasi-Keplerian flows of a liquid gallium al-
loy, GaInSn (Morley et al. 2008) which would become unstable
to the MRI in the presence of an applied solenoidal magnetic
field (Ji et al. 2001). To minimize the volume of GaInSn required
for the MRI studies, the height of the cylinders is only twice the
gap width between them, h/∆r = h/ (r2 − r1) ≈ 2. This aspect
ratio is small in comparison with other Taylor-Couette experi-
ments which aim to minimize the influence of the end caps by
separating them as much as possible. For example, Taylor (1936)
used h/∆r > 100. Further details of the design and implementa-
tion of the apparatus and diagnostics can be found in Schartman
et al. (2009).

3.1. Apparatus

The experiment outer cylinder is a pressure vessel into which the
inner cylinder and end rings are submerged. The outer cylinder is
a 25.4 mm thick annulus of cast acrylic capped by two 101.6 mm
thick acrylic disks. The inner cylinder and end rings are mounted
to nested stainless steel axles which pass through the top cap of
the outer cylinder. The rings are acrylic. The lower rings and
outer cylinder cap were polished to allow optical diagnostic ac-
cess to the fluid. The inner cylinder is stainless steel and was
painted black to reduce reflections which would interfere with
the velocity measurement (Table 1). A lip seal is mounted at the
top end of each axle to seal against its inner neighbor. The sub-
merged, lower, end of each component is fixed radially by a plain
bearing.

The hydrodynamic experiments reported here use water or a
water-glycerol mix as the working fluid. The kinematic viscosity
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• But not witnessed in numerical sims or (most) fluid experiments!
     (Balbus+ 1996, Ji+ 2006)
• Also, phenomenology of non-rotating shear flow transition does 

not carry over to Keplerian type rotating flows (Rincon + 2007)



Instabilities: hydro
• What about ‘nonlinear instability’, as in pipe and plane 

Couette flow?!
• Reynolds numbers in disks ~ 10^10 

Subcritical shear instabilities 
Origins

The Facts:  

keplerian shear flows are linearly stable 

Huge reynolds numbers      nonlinear instability? (same thing as pipe flows or Couette flows)

!21

pipe flow couette flow
A nonlinear instability in accretion discs? 

Experimental approach: hard to «do» a disc in a lab. Boundary conditions? 

Numerical approach: high reynolds numbers unreachable.

Ideal Taylor-
Couette

Real life  
Couette-Taylor  
(Schartman et 

al. 2012)

A&A 543, A94 (2012)
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Fig. 2. A) The Princeton MRI Experiment is a
Taylor-Couette apparatus in which the end caps
of the vessel have been divided in to two pairs
of nested, independently rotatable end rings.
B) The primary diagnostic of the fluid veloc-
ity is laser Doppler velocimetry (LDV). Radial
profiles of vθ are acquired with the diagnostic
viewing the fluid from the side. In the axial
orientation two components of velocity vθ and
vr are measured. Simultaneous measurement of
the two velocities gives a direct measure of the
r − θ component of the Reynolds stress. Due to
very low data rates, the Reynolds stress is mea-
sured primarily at one point.

the ratio of gap width to the average radius r̄ = (r1 + r2)/2,
∆r/r̄ > 1/20, Rec increases like (∆r/r̄)2. In this regime Richard
and Zahn rewrite the critical Reynolds number in terms of the
angular velocity gradient and arrive at an instability condition:

Rec =
r̄3

ν

∆Ω

∆r

(
∆r
r̄

)2

≥ 6 × 105
(
∆r
r̄

)2

· (7)

(We note that this prescription implies that the relevant length
scale is r̄ rather than other length scales, ∆r or h, an assumption
which may not be justified. See Sect. 5 for more discussion.)

By this prescription, Richard (2001) should expect a turbu-
lent transition at Rec ≈ 7 × 104 for the radius ratio ∆r/r̄ = 0.35.
In the cyclonic experiments, a transition was observed at Re =
3 × 104. However, the estimate for Rec does not carry over to
the anti-cyclonic experiment where a transition was observed
at Re ≈ 3 × 103. Also absent from the discussion leading to
this equation is an estimate of the perturbation amplitudes which
triggered the transitions in the experiments of Wendt and Taylor.

Torque measurements in the turbulent regime suggest to
Richard and Zahn that the turbulent viscosity, νt, is a diffusive
process and choose for it the form νt = αr̄∆Ω∆r, α is a constant.
Finally, using the observed approximate scaling of α with gap
width, Richard & Zahn conclude that the local value for νt be-
comes independent of the gap width (for large enough gaps) and
is determined only by the local shear:

νt = β

∣∣∣∣∣r
3 ∂Ω

∂r

∣∣∣∣∣ · (8)

The flux of angular momentum is then given by

ρr2⟨v′rv′θ⟩ = −ρνtr3 ∂Ω

∂r
, (9)

which can be rewritten in terms of q:

β = −⟨v′rv′θ⟩/q2v2θ . (10)

Thus, β can be directly determined through measurements of
the Reynolds stress. Finally, we comment on a particular case
where ⟨vθ⟩ satisfies the ideal Couette solution (Eq. (5)) with
negligible ⟨vr⟩ and axial dependences. In such a case, Eq. (6)
reduces to

1
r2

∂(r2⟨v′rv′θ⟩)
∂r

= 0 (11)

where the specific angular momentum flux, r2⟨v′rv′θ⟩ [=νtr3qΩ =
β(r3qΩ)2], is a spatial constant. This is especially convenient
when diagnostic access for Reynolds stress measurements are
limited to certain locations. The Reynolds stress at other loca-
tions can be inferred.

3. Experiment

The Princeton MRI Experiment is a novel Taylor-Couette appa-
ratus (Tagg 1994). The working fluid is confined between con-
centric, corotating cylinders which are bounded vertically by
two pairs of nested, differentially rotating end rings (Burin et al.
2006; Schartman et al. 2009), Fig. 2. The experiment was de-
signed to produce quasi-Keplerian flows of a liquid gallium al-
loy, GaInSn (Morley et al. 2008) which would become unstable
to the MRI in the presence of an applied solenoidal magnetic
field (Ji et al. 2001). To minimize the volume of GaInSn required
for the MRI studies, the height of the cylinders is only twice the
gap width between them, h/∆r = h/ (r2 − r1) ≈ 2. This aspect
ratio is small in comparison with other Taylor-Couette experi-
ments which aim to minimize the influence of the end caps by
separating them as much as possible. For example, Taylor (1936)
used h/∆r > 100. Further details of the design and implementa-
tion of the apparatus and diagnostics can be found in Schartman
et al. (2009).

3.1. Apparatus

The experiment outer cylinder is a pressure vessel into which the
inner cylinder and end rings are submerged. The outer cylinder is
a 25.4 mm thick annulus of cast acrylic capped by two 101.6 mm
thick acrylic disks. The inner cylinder and end rings are mounted
to nested stainless steel axles which pass through the top cap of
the outer cylinder. The rings are acrylic. The lower rings and
outer cylinder cap were polished to allow optical diagnostic ac-
cess to the fluid. The inner cylinder is stainless steel and was
painted black to reduce reflections which would interfere with
the velocity measurement (Table 1). A lip seal is mounted at the
top end of each axle to seal against its inner neighbor. The sub-
merged, lower, end of each component is fixed radially by a plain
bearing.

The hydrodynamic experiments reported here use water or a
water-glycerol mix as the working fluid. The kinematic viscosity
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• But not witnessed in numerical sims or (most) fluid experiments!
     (Balbus+ 1996, Ji+ 2006)
• Also, phenomenology of non-rotating shear flow transition does 

not carry over to Keplerian type rotating flows (Rincon + 2007)

Astrophysical differential rotation is rather special
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Instabilities: hydro
• But there other hydro instabilities:
• Gravitational instability!

• Toomre Q = Omega*c_s/(pi*G*M) < 1  (Toomre 1964)!
• Only attacks cold and massive disks (e.g. young PP disks)

[Credit: Ken Rice]



Instabilities: hydro
• But there other hydro instabilities:
• Gravitational instability!

• Q = Omega*c_s/(pi*G*M) < 1!
• Only attacks cold and massive disks (e.g. young PP disks)

• Various double-diffusive instabilities:!
• “Vertical shear instability” (GSF instability)!
• “Convective overstability” (semi-convection)!
•  Subcritical baroclinic instability 

The Astrophysical Journal, 789:77 (7pp), 2014 July 1 Lyra

Figure 4. Nonlinear evolution of the buoyant overstability in three dimensions. With the linear overstability raising the amplitude of the initial fluctuations to nonlinear
levels, the saturated state is expected to be similar to that of the SBI. In the lower left panels we show the averaged vertical vorticity; the lower right panel shows the
vorticity in the three-dimensional flow. Indeed, we see that large-scale self-sustained anticyclonic vortices develop in the saturated state. The upper left panel shows
the radial velocity rms and vertical enstrophy (red and black line, respectively.) The upper right panel shows the level of Reynolds stress, which saturates at α ≈ 10−3.
(A color version of this figure is available in the online journal.)

is shown in the panels of Figure 2. The linear phase matches the
analytical prediction (dashed black line) for all models ran.

Figure 2(a) shows the dependency on resolution. Convergence
is achieved for 64 grid points per scale height. There is also
convergence for the initial amplitude of the perturbation, as seen
in Figure 2(c). The linear phase is identical in the three cases
examined (u0 = 10−4, 10−6, and 10−10). In this figure we set
t = 0 as the time when saturation is achieved, to better compare
with the nonlinear evolution. In Figure 2(d) we check how the
instability depends on the pressure gradient. Again, the linear
phase is reproduced for the different values of the Brunt–Väisälä
frequency, and the amplitudes at saturation are similar, within
a factor two to three. A difference in seen when we test the
dependency on box size (Figure 2(b)). The amplitude seemed to
saturate at 4H × 4H (red line), since the model with Lx = 6H
(green line) shows a similar amplitude. However, the model with
Lx = 8H (cyan line) shows a bifurcation at ≈150 orbits. Models
with a larger radial range (Lx = 10 and Lx = 12, purple and
magenta lines, respectively) show no convergence, even as the
velocity dispersion increasingly approaches the sound speed.

Interesting features that help us understand the behavior of
the system are seen in this simulation. We plot in Figure 3 the
time evolution of the power in the first five large-scale modes, in
both x (upper middle panel) and z (upper left panel). The upper

left panel shows the rms of the radial velocity. Four special/
representative instants are labeled, and the ux field for these
respective instants are shown in the lower panels.

The first instant, A, corresponds to the first “saturation” seen
at 50 orbits. The power spectrum shows that the clean initial
channel mode (kz/kz0 = 4, kx/kx0 = 0) persisted until this time,
after which it saturates, exciting kx ̸= 0 modes and other kz

modes. Instant B, at 67 orbits, corresponds to the local minimum
in rms velocity. The power spectrum shows that this happens
when the kz/kz0 = 1 mode becomes dominant. Subsequently,
this mode keeps growing, at the same rate as the initial
kz/kz0 = 4 mode. This is because the growth rate is independent
of kz for kx = 0, which at that time has similar power to
the higher kx modes. From time t = 90 (instant C) to 160
orbits the system settles into a steady state, with a dominant
kz/kz0 = 1 mode, and mixed kx/kx0 = 0 and kx/kx0 = 1.
Another bifurcation happens when the kz = 0 mode overtakes
the kz/kz0 = 1 mode. Simultaneously, it prompts kx/kx0 = 1
to dominate over kx = 0. The final state (labeled D) is thus
vertically symmetric, with a box-wide radial wavelength.

This explains why we do not find convergence while increas-
ing the box vertical range from Lz = H to 2H to 4H . In these
boxes, because we kept the seed mode at kz = 2π/H , we ini-
tialized the instability with the kz/kz0 = 1, 2, and 4 modes,

6

(Nelson+ 2013,  
Latter+Papaloizou 2018)
(Lyra 2014, Latter 2016)

(Lesur+Papaloizou 2010)

(Stoll & Kley 2014) (Lyra 2014) (Credit: Wlad Lyra)



Instabilities: hydro
• But there other hydro instabilities:
• Gravitational instability!

• Q = Omega*c_s/(pi*G*M) < 1!
• Only attacks cold and massive disks (e.g. young PP disks)

• Various double-diffusive instabilities:!
• “Vertical shear instability” (GSF instability)!
• “Convective overstability” (semi-convection)!
•  Subcritical baroclinic instability 

• “Rossby wave instability”!
• Requires a strong disk inhomogeneity (gap or pressure bump)

(Lovelace and Romanova 2014)

(Lovelace+ 1999)



Instabilities: hydro
• But there other hydro instabilities:
• Gravitational instability!

• Q = Omega*c_s/(pi*G*M) < 1!
• Only attacks cold and massive disks (e.g. young PP disks)

• Various double-diffusive instabilities:!
• “Vertical shear instability” (GSF instability)!
• “Convective overstability” (semi-convection)!
•  Subcritical baroclinic instability 

• “Rossby wave instability”!
• Requires a strong disk inhomogeneity (gap or pressure bump)

• Papaloizou-Pringle (corotation) instabilities!
• Needs reflecting inner boundary!
• Exacerbated by GR!

(Papalozou+Pringle 1984, Goodman+ 1985, 
Narayan+1987, Lai+Tsang 2009)



Instabilities: hydro
• But there other hydro instabilities:
• Gravitational instability!

• Q = Omega*c_s/(pi*G*M) < 1!
• Only attacks cold and massive disks (e.g. young PP disks)

• Various double-diffusive instabilities:!
• “Vertical shear instability” (GSF instability)!
• “Convective overstability” (semi-convection)!
•  Subcritical baroclinic instability 

• “Rossby wave instability”!
• Requires a strong disk inhomogeneity (gap or pressure bump)

• Papaloizou-Pringle (corotation) instabilities!
• Needs reflecting inner boundary!
• Exacerbated by GR

• None sufficiently general, strong, efficient, etc.
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Instabilities:MHD
• Okay, so what about magnetic fields?

• Um, things are really different. We get a strong linear 
instability when:

Magnetorotational instability 
Main properties

Fast instability (             ) 

Condition for instability               satisfied in discs 

Also works for different field topologies (eg toroidal field: Balbus & 
Hawley 1992) 

Need weak enough fields (                    )

!33

� ⇠ ⌦
d⌦

dR
< 0

k · vA . ⌦

Can it explain turbulent transport in accretion discs?

(compare with !
Rayleigh criterion)

• This is the magneto rotational instability (MRI) (Balbus & Hawley 1991)



Instabilities:MHD
• Okay, so what about magnetic fields?

• How does this work? Consider planar Lagrangian perturbations

Stability analysis 
Hydrodynamic case
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(Credit: G Lesur)
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Stability analysis 
Epicyclic oscillations

Resulting equation of motion for a fluid particle:

⇠̈R � 2⌦⇠̇� = � d⌦2

d lnR
⇠R

⇠̈� + 2⌦ ˙⇠R = 0

 =
⇣
4⌦2 +

d⌦2

d lnR

⌘1/2

 
particle Epicyclic!

circulations!
in co-rotating !

frame

(Credit: G Lesur)
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Stability analysis 
Magnetised case

⇠Induction equation for a small displacement 

and a spatial dependence                     :/ exp(ikz)

�B = i(k ·Bz0)⇠

The magnetic tension force is

Bz0 ·rB

⇢
=

i(k ·Bz0)

⇢
�B = �(k · vA)2⇠

Resulting equation of motion for a fluid particle:

⇠̈R � 2⌦⇠̇� = �
⇣ d⌦2

d lnR
+ (k · vA)2

⌘
⇠R

⇠̈� + 2⌦ ˙⇠R = �(k · vA)2⇠� (Credit: G Lesur)
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Field line

A
B

A

B

[Balbus, & Hawley (1991)] 
[Balbus (2003)]
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Origin of turbulence in discs 
The Magnetorotational instability (MRI)

Resulting equation of motion for a fluid particle:

⇠̈R � 2⌦⇠̇� = �
⇣ d⌦2

d lnR
+ (k · vA)2

⌘
⇠R

⇠̈� + 2⌦ ˙⇠R = �(k · vA)2⇠�

Forces on the right!
hand sides act a !
bit like a spring!

(Credit: G Lesur)
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DestabilizingStabilizing
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Stability analysis 
Dispersion relation
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[Balbus & Hawley 1991]

Introduce: Dispersion relation
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Stability analysis 
Dispersion relation
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Fastest growth rate: Very fast!

(Credit: G Lesur)
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Credit: A. Goodman, C. Beaumont !
(course on ISM and Star Formation)



Instabilities: the MRI
• Instability mechanism something like:

Credit: A. Goodman, C. Beaumont !
(course on ISM and Star Formation) Credit: spaghetti dude



Instabilities: the MRI
• Instability mechanism something like:

• In more realistic disk models, some additional criteria:

� & 1 Rm & � ⇤AD > 1

Credit: A. Goodman, C. Beaumont !
(course on ISM and Star Formation) Credit: spaghetti dude



Magnetohydrodynamic!
Turbulence



MHD turbulence
• Okay, so the disk goes MRI unstable; what happens next?



MHD turbulence
• Okay, so the disk goes MRI unstable; what happens next?
• Really, we need to perform numerical simulations to find out!
• They come in various flavours: 



MHD turbulence
• Okay, so the disk goes MRI unstable; what happens next?
• Really, we need to perform numerical simulations to find out!
• They come in various flavours: 

• Local (shearing box) simulations

(credit: Jake Simon)

(credit: Jeff Lesur)



MHD turbulence
MHD in the shearing box
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(credit: T. Heinemann)



MHD turbulence

Boundary conditions

Courtesy T. Heinemann

!36

Use shear-periodic boundary conditions= 
«shearing-sheet» 

Allows one to use a sheared Fourier Basis 

periodic in y and z (non stratified box)

x

z y

mean vertical field

x

z y

mean toroidal field

x

z y

zero mean field

Mean vertical and toroidal fields are conserved

• Vertical case: linear channel modes are exact solutions. Bursty.!
• Toroidal case: no linear axisym. instability; nonlinear non-axi instability   !
• Zero mean: bears similarities to small-scale turbulent dynamo!
• Zero mean: turbulence dies out if magnetic Prandtl number below ~<2

(credit: Jeff Lesur)



MHD turbulence
• Generally:

Typical simulation

Simulation parameters: Re=1000, 
Pm=1, β=1000 

3D map of vy (azimuthal velocity)
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MHD turbulence
• Generally:

Typical simulation

Simulation parameters: Re=1000, 
Pm=1, β=1000 

3D map of vy (azimuthal velocity)

!38
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• Some issues:!
• alpha ~ 0.01   but observations require somewhat larger values!
• Zero mean case dies when Pm low. But that is precisely the case in most 

astrophysics  !
• Sims are expensive: don’t have great separation of scales, barely an inertial 

range:!
• overlapping injection scales, strong turbulence range, reconnection 

current sheet range !
• can barely reach the small scales where rotation and shear ‘drop out’

(credit: Jeff Lesur)



MHD turbulence
Global sims

[Flock+ 2011]

Global simulations are consistent with box simulations in the same conditions    

[Hawley+ (1995) ; Fromang & Nelson (2006) ; Sorathia+ (2012)]

MRI Simulations 
Global simulations

!41

↵ ⇠ 10�3—10�2

• diversity of scales between 
radius and thickness, makes 
thin disk very hard to simulate

• Resolution constraints mean 
turbulence doesn’t ‘exist’   (i.e. 
injection scale too close to grid 
scale)



MHD turbulence
Global sims

[Flock+ 2011]

Global simulations are consistent with box simulations in the same conditions    

[Hawley+ (1995) ; Fromang & Nelson (2006) ; Sorathia+ (2012)]

MRI Simulations 
Global simulations

!41

↵ ⇠ 10�3—10�2

• alpha ~ 10^-3 - 10^-2

• diversity of scales between 
radius and thickness, makes 
thin disk very hard to simulate

• Resolution constraints mean 
turbulence doesn’t ‘exist’   (i.e. 
injection scale too close to grid 
scale)

• but can describe global 
accretion flow; large-scale 
features, oscillations, jets, etc



Beyond ideal MHD

• separation of scales between 
radius and thickness, makes 
thin disk very hard to 
simulate

• protoplanetary disks
Ionisation sources in protoplanetary discs

!44

~1AU ~10AU

Thermal 
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Protoplanetary disc plasmas are dominated by neutrals

(credit: Jeff Lesur)



Beyond ideal MHD

• Three non-ideal MHD effects appear:!
• Ohmic resistivity (can be important at mid plane, at smaller radii)!
• Ambipolar diffusion (dominates upper layers)!
• Hall effect (dominates mid plane)

• The MRI is, in general, KILLED (except maybe in outer radii)!
• because Am < 1, and Rm also too low…



Beyond ideal MHD
• Instead you get:!

• self-organisation near the mid plane (rings and zonal flows)!
• wind launching at the better ionised surface layers

weak ionisation regions 
Wind-driven accretion

Surface layer is sufficiently ionised to drive a wind 

Wind extract angular momentum and generates accretion 

Self organisation instead of turbulence in the midplane
!47
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4.4.4. Coexistence of accreting and non-accreting regions

All the cases presented so far were relatively symmetric with
respect to the disk midplane. In particular, the inward or out-
ward mass streams were located near the midplane. Yet we have
disks exhibiting both accreting and non-accreting behaviors at
the same time. We show the radial transition between two di↵er-
ent portions of the same disk in Fig. 20.

Fig. 20. Same as Fig. 16 for run R1-P4 at t = 1000T0. The disk exhibits
both an accreting (inner) and a non-accreting (outer) region.

As mentionned in Sect. 4.1.2, the mass flux actually follows
the B' = 0 layer, where the electric current is extremal. The
transition from an accreting to a non-accreting disk region nec-
essarily comes with the current sheet reaching the surface of the
disk. In a region where B' has a non-accreting phase, there is
no magnetized outflow, and B' ⇡ 0 above the disk. In this case,
the mass flux follows closed circulation loops along the current
sheet, inward at the surface and outward in the midplane. At the
intersection with an accreting region, part of this mass flux is
reoriented into the wind, and part of it goes to the midplane.

4.5. Vertical symmetry breaking

This section describes a spontaneous breaking of the up/down
symmetry identified in our simulations. It is related to the emer-
gence of a favored magnetic polarity over long time scales.

4.5.1. Overview

Within our stratified setup, the horizontal magnetic flux is free
to leave the disk in the vertical direction. One polarity can be

removed or amplified faster than the other, leaving the disk with
only one sign of B'. This was observed in stratified shearing-
box simulations (Lesur et al. 2014; Bai 2015), but considered
unlikely to be directly connected to a global flow geometry. Fo-
cusing on the horizontal magnetic field, we will refer to these as
even configurations with respect to the disk midplane in opposi-
tion to states showing an odd symmetry.

Such a configuration is illustrated in Fig. 21 for run R1-M3.
The entire disk sees B' < 0; the Keplerian and Hall shears ensure
that Br > 0 is also even about the midplane. In the inner half
of the northern corona, the magnetic field lines do not guide the
velocity field. Because the corona obeys ideal MHD, this implies
that this part of the flow is turbulent, resulting in an e↵ective
“turbulent di↵usion” for the time-averaged flow. On the contrary,
the outflow in the southern corona is very laminar and stationary.
A magnetic collimation e↵ect is observed in this hemisphere.

Fig. 21. Averaged flow poloidal map for run R1-M3 (from 1au to 10au,
with moderate Bz < 0) from 800T0 to 1000T0; magnetic field lines are
sampled along the midplane, and the velocity field is indicated with
green arrows over the background toroidal field. The polar asymmetry
and the absence of B' sign reversal within the disk are obvious.

4.5.2. Vertical structure

The vertical structure of run R1-M3 is represented in Fig. 22.
A strong outflow is launched in the southern hemisphere, with
v✓/vK ⇡ 20% at z ⇡ �8h. The toroidal velocity is higher than the
local Keplerian value, down to z ⇡ �6h. The outflow receives
angular momentum via the Maxwell stressMz', and transports
mass at a rate ṁ�w ⇡ 2.6 ⇥ 10�7 M�. yr�1. Picking a streamline
passing through (r = 6r0, z = �5h), its total angular momen-
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Fig. 24. Vertical profiles in run R1-P2, averaged in time between 120T0
and 130T0, and in spherical radius between 5.5r0 and 6r0; upper panel:
sonic Mach number for the radial Alfvén velocity (solid blue) and elec-
tron minus ion velocity, normalized by the Keplerian velocity (dashed
red); lower panel: induction of radial magnetic field.

momentarily be as narrow as eight grid cells in the disk. How-
ever, with a magnetic Reynolds number RA ⇡ 3, we believe that
this width is primarily attributed to physical di↵usivity and not
numerical di↵usion. This run also displays an even B' symme-
try, causing the tilting of magnetic field lines through the disk.
As in run R1-M3 (cf. Fig. 21), ejection is thermally driven in the
northern corona, and magnetically enhanced in the southern one.

Density and magnetic field fluctuations are anti-correlated.
Table 3 shows that runs with Bz < 0 or � > 5⇥103 do not exhibit
such structures. These are the runs in which the disk midplane is
Hall-shear stable, or has linear growth rates smaller than 0.01⌦.
Because our 3D simulations were integrated over shorter time
intervals, the indicated number of zonal flows cannot directly be
compared between equivalent 2D and 3D runs.

4.6.2. Self-organization mechanism

The induction of Bz is governed by the toroidal electromotive
force (EMF), the same as in Eq. (21):
*
@Bz

@t

+

',z
= �1

r
@

@r

D
r (EI + EO + EH + EA)'

E
',z
, (23)

so the average Bz increases in time where E' decreases with ra-
dius. The ideal, Hall and ambipolar EMFs can be expressed as:

EI ⌘ �v ⇥ B, EH ⌘ `H J ⇥ B, EA ⌘ ⌘A J?, (24)

J? ⌘ J �
 

J · B
B · B

!
B. (25)

The first panel of Fig. 26 shows the anti-correlated fluctu-
ations of density and magnetic field. In the second panel, we
plot the averaged EMFs. The ohmic contribution has been omit-
ted for it is negligible and cannot confine magnetic flux. The
ideal term EI' increases with radius at the location of each mag-
netic field concentration. The velocity field thus acts as a turbu-
lent di↵usion. The ambipolar term precisely balances the ideal

Fig. 25. Averaged flow poloidal map for run R1-P2 (from 1au to 10au,
with strong Bz > 0), from 500T0 to 700T0; magnetic field lines are
sampled along the midplane, and the velocity field is indicated with
green arrows over the background density field. Magnetic field lines are
accumulated in low density rings.

one, so it decreases with radius at the location of each band.
This was already noted by Bai & Stone (2014) (see their Fig.
8). Ambipolar di↵usion is therefore responsible for the accu-
mulation of Bz. Apart from being negligible by a factor 50, the
Hall term acts against the accumulation of magnetic flux. Hall-
driven self-organization requires the magnetic stress and flux
to be anti-correlated (Kunz & Lesur 2013). This is possible in
non-stratified simulations, when the net magnetic flux becomes
strong enough to stabilize the HSI. In stratified simulations, the
wind-driven stress �B'Bp is known to correlate with the net
magnetic flux for � � 1 (Lesur et al. 2014). Self-organization
can thus be inhibited if the wind drives the magnetic stress in
Hall-shear stable (i.e., strong field) regions.

The direction of the ambipolar EMF is given by the elec-
tric current projected perpendicularly to the local magnetic field.
Upon projection, the sign of the toroidal component J?' can be-
come opposed to the sign of J'. This is what happens in our
simulations featuring zonal flows, as shown in the bottom panel
of Fig. 26. In this case, the toroidal component of EA yields a
negative e↵ective resistivity (cf. Eq. (24)).

The typical configuration occurring in such simulations is
sketched in Fig. 27. The magnetic field is mainly toroidal in the
disk, and the dominant component of J is the radial one. The
signs of J' and J?' are opposed, and they remain opposed when
flipping the orientation of J and/or B. Ambipolar di↵usion re-
mains a dissipative process when considering all three spatial
directions. With J? ' Jr and @' ' 0, the di↵usion occurs pri-
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Finally

• If you want to know more - do not hesitate to approach me for a 
chat 

• I can also put together reading lists for you, depending on your 
interests


