

The Particle-In-Cell (PIC) simulation of plasmas

Mickael Grech, LULI, CNRS <u>mickael.grech@gmail.com</u>

Les Houches, Mai 2019

Plasma Physics via Computer Simulation C. K. Birdsall & A. B. Langdon

Plasma Physics via Computer Simulation C. K. Birdsall & A. B. Langdon

Computational Electrodynamics A.Taflove

Plasma Physics via Computer Simulation C. K. Birdsall & A. B. Langdon

Computational Electrodynamics A. Taflove

Numerical Recipies W. H. Press *et al.* NUMERICAL

INSTITUTE OF PHYSICS SERIES IN PLASMA PHYSICS

IN

ADVANCES

Computati

The Art of Scientific Computing

THIRD EDITION

William H. Press Sinul A. Tenkulskaj William T. Vetterling Brian P. Flanmerg

lethod

Cosmology

source: K. Heitmann, Argonne National Lab

Cosmology

source: K. Heitmann, Argonne National Lab

Space propulsion (Plasma thruster)

source: Gauss Center for Supercomputing

Cosmology

source: K. Heitmann, Argonne National Lab

Space propulsion (Plasma thruster)

source: Gauss Center for Supercomputing

Cosmology

source: K. Heitmann, Argonne National Lab

Space propulsion (Plasma thruster)

source: Gauss Center for Supercomputing

Laser plasma interaction

source: SMILEI dev-team

Cosmology

source: K. Heitmann, Argonne National Lab

Space propulsion (Plasma thruster)

source: Gauss Center for Supercomputing

Laser plasma interaction

- Conceptually simple
- Efficiently implemented on (massively) parallel super-computers

source: SMILEI dev-team

$\begin{aligned} & \mathbf{E} \text{lectromagnetic Field} \\ & \nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0} & \partial_t \mathbf{E} = -\frac{1}{\epsilon_0} \mathbf{J} + c^2 \nabla \times \mathbf{B} \\ & \nabla \cdot \mathbf{B} = 0 & \partial_t \mathbf{B} = -\nabla \times \mathbf{E} \end{aligned}$

Ist Remark

Normalization: the Vlasov-Maxwell (relativistic) description provides us with a set of natural units

Plasma			
$\partial_t f_s + \frac{\mathbf{p}}{m_s \gamma} \cdot \nabla f_s + \mathbf{F}_L \cdot \nabla_\mathbf{p} f_s = 0$			
Electromagnetic Field			
$\nabla \cdot \mathbf{E} = \boldsymbol{\rho}$	$\partial_t \mathbf{E} = -\mathbf{J} + \nabla \times \mathbf{B}$		
$\nabla \cdot \mathbf{B} = 0$	$\partial_t \mathbf{B} = - abla imes \mathbf{E}$		

Velocity	С
Charge	e
Mass	m_e
Momentum	m_e
Energy, Temperature	$m_e c$
Time	ω_r^{-1}
Length	c/ω
Number density	n_r =
Current density	ecr
Pressure	m_e
Electric field	m_e
Magnetic field	m_{e}
Poynting flux	m_e
	4

С c^2 r' $= \epsilon_0 \, m_e \, \omega_r^2 / e^2$ n_r $c^2 n_r$ $c \omega_r / e$ $\omega_r/e c^3 n_r/2$

Ist Remark

Normalization: the Vlasov-Maxwell (relativistic) description provides us with a set of natural units

	Velocity	С
Plasma	Charge	e
	Mass	m_e
$\partial_t f_s + \frac{\mathbf{p}}{\mathbf{p}} \cdot \nabla f_s + \mathbf{F}_L \cdot \nabla_{\mathbf{p}} f_s = 0$	Momentum	$m_e c$
$m_s\gamma$ $m_s\gamma$	Energy, Temperature	$m_e c^2$
	Time	ω_r^{-1}
	Length	c/ω_r
Electromagnetic Field	Number density	$n_r = \epsilon_0 m_e \omega_r^2 / e^2$
$\nabla \mathbf{D} = \mathbf{D} \mathbf{D} \mathbf{D}$	Current density	$e c n_r$
$\nabla \cdot \mathbf{E} = \boldsymbol{\rho} \qquad \partial_t \mathbf{E} = -\mathbf{J} + \nabla \times \mathbf{B}$	Pressure	$m_e c^2 n_r$
$\nabla \cdot \mathbf{B} = 0 \qquad \partial_t \mathbf{B} = -\nabla \times \mathbf{E}$	Electric field	$m_e c \omega_r / e$
	Magnetic field	$m_e \omega_r / e$
	Poynting flux	$m_e c^3 n_r / 2$

The value of ω_r is not defined a priori, and acts as a scaling factor.

The Particle-In-Cell method integrates Vlasov Equation along the trajectories of so-called *quasi-particles*

Vlasov Eq. is a **partial differential equation** (PDE) in Ns+Nv phase-space: $\partial_t f_s + \frac{\mathbf{p}}{m_s \gamma} \cdot \nabla f_s + \mathbf{F}_L \cdot \nabla_{\mathbf{p}} f_s = 0$

The Particle-In-Cell method integrates Vlasov Equation along the trajectories of so-called *quasi-particles*

Vlasov Eq. is a **partial differential equation** (PDE) in Ns+Nv phase-space: $\partial_t f_s + \frac{\mathbf{p}}{m_s \gamma} \cdot \nabla f_s + \mathbf{F}_L \cdot \nabla_{\mathbf{p}} f_s = 0$

Direct integration (Vlasov codes) has tremendous computational cost!

The Particle-In-Cell method integrates Vlasov Equation along the trajectories of so-called *quasi-particles*

Vlasov Eq. is a **partial differential equation** (PDE) in Ns+Nv phase-space: $\partial_t f_s + \frac{\mathbf{p}}{m_s \gamma} \cdot \nabla f_s + \mathbf{F}_L \cdot \nabla_{\mathbf{p}} f_s = 0$

Direct integration (Vlasov codes) has tremendous computational cost!

The **PIC ansatz** consists in decomposing the distribution fct: $f_s(t, \mathbf{x}, \mathbf{p}) = \sum_{p=1}^{N} w_p S(\mathbf{x} - \mathbf{x}_p(t)) \,\delta(\mathbf{p} - \mathbf{p}_p(t))$

Shape-function Dirac-distribution

The Particle-In-Cell method integrates Vlasov Equation along the trajectories of so-called *quasi-particles*

Injecting this ansatz in Vlasov Eq., multiplying by ${\bf p}$ and integrating over all momenta ${\bf p}$

$$\sum_{p=1}^{N_s} w_p \frac{\mathbf{p}_p}{m_s \gamma_p} \mathbf{p}_p \cdot \left[\partial_{\mathbf{x}_p} S(\mathbf{x} - \mathbf{x}_p) + \partial_{\mathbf{x}} S(\mathbf{x} - \mathbf{x}_p) \right] \\ + \sum_{p=1}^{N_s} w_p S(\mathbf{x} - \mathbf{x}_p) \left[\partial_t \mathbf{p}_p - q_s \left(\mathbf{E} + \mathbf{v}_p \times \mathbf{B} \right) \right] = 0$$

Let us now integrate in space:

$$\sum_{p=1}^{N_s} w_p \frac{\mathbf{p}_p}{m_s \gamma_p} \mathbf{p}_p \cdot \int d\mathbf{x} \left[\partial_{\mathbf{x}_p} S(\mathbf{x} - \mathbf{x}_p) + \partial_{\mathbf{x}} S(\mathbf{x} - \mathbf{x}_p) \right] \\ + \sum_{p=1}^{N_s} w_p \int d\mathbf{x} S(\mathbf{x} - \mathbf{x}_p) \left[\partial_t \mathbf{p}_p - q_s \left(\mathbf{E} + \mathbf{v}_p \times \mathbf{B} \right) \right] = 0$$

Finally leading to solving for all p: $\partial_t \mathbf{p}_p = q_s \left(\mathbf{E}_p + \mathbf{v} \times \mathbf{B}_p \right)$ with $(\mathbf{E}, \mathbf{B})_p \equiv \int d\mathbf{x} \left(\mathbf{E}, \mathbf{B} \right) (\mathbf{x}) S(\mathbf{x} - \mathbf{x}_p)$

If one does things in a smart way, only Maxwell-Ampère & Maxwell-Faraday Eqs. need to be solved

If one does things in a smart way, only Maxwell-Ampère & Maxwell-Faraday Eqs. need to be solved

Take the divergence of Maxwell-Ampère's Eq. :

$$\nabla \cdot (\partial_t \mathbf{E} + \mathbf{J} = \nabla \times \mathbf{B})$$

$$\Leftrightarrow$$

$$\partial_t \nabla \cdot \mathbf{E} + \nabla \cdot \mathbf{J} = 0$$

If one does things in a *smart way*, only Maxwell-Ampère & Maxwell-Faraday Eqs. need to be solved

Take the divergence of Maxwell-Ampère's Eq. :

$$\nabla \cdot (\partial_t \mathbf{E} + \mathbf{J} = \nabla \times \mathbf{B})$$

$$\Leftrightarrow$$

$$\partial_t \nabla \cdot \mathbf{E} + \nabla \cdot \mathbf{J} = 0$$

Assume charge is conserved, i.e., $\partial_t \rho + \nabla \cdot \mathbf{J} = 0$

If one does things in a *smart way*, only Maxwell-Ampère & Maxwell-Faraday Eqs. need to be solved

Take the divergence of Maxwell-Ampère's Eq. :

$$\nabla \cdot (\partial_t \mathbf{E} + \mathbf{J} = \nabla \times \mathbf{B})$$

$$\Leftrightarrow$$

$$\partial_t \nabla \cdot \mathbf{E} + \nabla \cdot \mathbf{J} = 0$$

Assume charge is conserved, i.e., $\partial_t \rho + \nabla \cdot \mathbf{J} = 0$

One gets: $\partial_t (\nabla \cdot \mathbf{E} - \rho) = 0$

If one does things in a smart way, only Maxwell-Ampère & Maxwell-Faraday Eqs. need to be solved

Take the divergence of Maxwell-Ampère's Eq. :

$$\nabla \cdot (\partial_t \mathbf{E} + \mathbf{J} = \nabla \times \mathbf{B})$$

$$\Leftrightarrow$$

$$\partial_t \nabla \cdot \mathbf{E} + \nabla \cdot \mathbf{J} = 0$$

Assume charge is conserved, i.e., $\partial_t \rho + \nabla \cdot \mathbf{J} = 0$

One gets: $\partial_t (\nabla \cdot \mathbf{E} - \rho) = 0$

If at time t=0, Poisson & Gauss Eqs. are satisfied, and if current deposition is made in a way that conserve charge, then solving only Maxwell-Ampère & Maxwell-Faraday ensures that both Eqs. remain satisfied at later time.

1) for each species of your plasma, create your quasi-particles e.g. defining the species density, velocity and temperature profiles

- 1) for each species of your plasma, create your quasi-particles e.g. defining the species density, velocity and temperature profiles
- 2) loop over all particles and project charge and current density onto the grid

- 1) for each species of your plasma, create your quasi-particles e.g. defining the species density, velocity and temperature profiles
- 2) loop over all particles and project charge and current density onto the grid
- 3) knowing the charge density solve Poisson's Eq. to get the electrostatic field

- 1) for each species of your plasma, create your quasi-particles e.g. defining the species density, velocity and temperature profiles
- 2) loop over all particles and project charge and current density onto the grid
- 3) knowing the charge density solve Poisson's Eq. to get the electrostatic field
- 4) add any (user defined) external fields provided they are divergence-free

Gather fields at particle position $[\mathbf{E}, \mathbf{B}]
ightarrow [\mathbf{E}_p, \mathbf{B}_p]$

Gather fields at particle position $[\mathbf{E}, \mathbf{B}] \rightarrow [\mathbf{E}_p, \mathbf{B}_p]$

Push all particles

$$\forall p \quad d_t \mathbf{u}_p = \frac{q_s}{m_s} \mathbf{F}_L$$
$$d_t \mathbf{x}_p = \mathbf{u}_p / \gamma_p$$

Gather fields at particle position $[\mathbf{E},\mathbf{B}]
ightarrow [\mathbf{E}_p,\mathbf{B}_p]$

Push all particles

$$\forall p \quad d_t \mathbf{u}_p = \frac{q_s}{m_s} \mathbf{F}_L$$
$$d_t \mathbf{x}_p = \mathbf{u}_p / \gamma_p$$

Project current densities on grid*

 $[\mathbf{x}_p, \mathbf{p}_p] \to [\rho, \mathbf{J}]$

* using a charge conserving scheme

Gather fields at particle position $[\mathbf{E},\mathbf{B}]
ightarrow [\mathbf{E}_p,\mathbf{B}_p]$

Solve Maxwell's Eqs. $\partial_t \mathbf{E} = -\mathbf{J} + \nabla \times \mathbf{B}$ $\partial_t \mathbf{B} = -\nabla \times \mathbf{E}$

Push all particles

$$\forall p \quad d_t \mathbf{u}_p = \frac{q_s}{m_s} \mathbf{F}_L$$
$$d_t \mathbf{x}_p = \mathbf{u}_p / \gamma_p$$

Project current densities on grid*

 $[\mathbf{x}_p, \mathbf{p}_p] \to [\rho, \mathbf{J}]$

* using a charge conserving scheme
The Particle-In-Cell loop

Gather fields at particle position $[\mathbf{E}, \mathbf{B}] \rightarrow [\mathbf{E}_p, \mathbf{B}_p]$

Solve Maxwell's Eqs. $\partial_t \mathbf{E} = -\mathbf{J} +
abla imes \mathbf{B}$ $\partial_t \mathbf{B} = abla imes \mathbf{E}$

Push all particles

$$d_t \mathbf{u}_p = \frac{q_s}{m_s} \mathbf{F}_L$$
$$d_t \mathbf{x}_p = \mathbf{u}_p / \gamma_p$$

Project current densities on grid*

 $[\mathbf{x}_p, \mathbf{p}_p] \to [\rho, \mathbf{J}]$

* using a charge conserving scheme

Outlines

- Numerical approach: how to build up your PIC code
- Parallelization: getting ready for the super-computers
- Additional modules: beyond the collisionless plasma
- Some physics highlights: what you can do with a PIC code

Outlines

- Numerical approach: how to build up your PIC code
- Parallelization: getting ready for the super-computers
- Additional modules: beyond the collisionless plasma
- Some physics highlights: what you can do with a PIC code

$$(\mathbf{E}, \mathbf{B})_p \equiv \int d\mathbf{x} \, (\mathbf{E}, \mathbf{B})(\mathbf{x}) \, S(\mathbf{x} - \mathbf{x}_p)$$

$$\hat{s}^{(0)}(x) = \Delta x \,\delta(x),$$

$$\hat{s}^{(1)}(x) = \begin{cases} 1 \text{ if } |x| \leq \frac{1}{2} \,\Delta x, \\ 0 \text{ otherwise,} \end{cases}$$

$$\hat{s}^{(2)}(x) = \begin{cases} \left(1 - \left|\frac{x}{\Delta x}\right|\right) \text{ if } |x| \leq \Delta x, \\ 0 \text{ otherwise,} \end{cases}$$

$$\hat{s}^{(3)}(x) = \begin{cases} \frac{3}{4} \left[1 - \frac{4}{3} \left(\frac{x}{\Delta x}\right)^2\right] \text{ if } |x| \leq \frac{1}{2} \,\Delta x, \\ \frac{9}{8} \left(1 - \frac{2}{3} \left|\frac{x}{\Delta x}\right|\right)^2 \text{ if } \frac{1}{2} \,\Delta x < |x| \leq \frac{3}{2} \,\Delta x, \\ 0 \text{ otherwise,} \end{cases}$$

$$\hat{s}^{(4)}(x) = \begin{cases} \frac{2}{3} \left[1 - \frac{3}{2} \left(\frac{x}{\Delta x}\right)^2 + \frac{3}{4} \left|\frac{x}{\Delta x}\right|^3\right] \text{ if } |x| \leq \Delta x, \\ \frac{4}{3} \left(1 - \frac{1}{2} \left|\frac{x}{\Delta x}\right|\right)^3 \text{ if } \Delta x < |x| \leq 2 \,\Delta x, \\ 0 \text{ otherwise.} \end{cases}$$

otherwise.

$$\mathbf{u}_m = \mathbf{u}_p^{(n-\frac{1}{2})} + \frac{q_s}{m_s} \frac{\Delta t}{2} \mathbf{E}_p$$

$$\mathbf{u}_{m} = \mathbf{u}_{p}^{\left(n - \frac{1}{2}\right)} + \frac{q_{s}}{m_{s}} \frac{\Delta t}{2} \mathbf{E}_{p}$$
$$\mathbf{u}_{p} = \mathbf{u}_{p}^{\left(n - \frac{1}{2}\right)} + \frac{q_{s}}{m_{s}} \Delta t \,\mathcal{M}(\mathbf{B}_{p}) \,\mathbf{u}_{m}$$

$$\mathbf{u}_{m} = \mathbf{u}_{p}^{(n-\frac{1}{2})} + \frac{q_{s}}{m_{s}} \frac{\Delta t}{2} \mathbf{E}_{p}$$
$$\mathbf{u}_{p} = \mathbf{u}_{p}^{(n-\frac{1}{2})} + \frac{q_{s}}{m_{s}} \Delta t \,\mathcal{M}(\mathbf{B}_{p}) \,\mathbf{u}_{m}$$
$$\mathbf{u}_{p}^{(n+\frac{1}{2})} = \mathbf{u}_{p} + \frac{q_{s}}{m_{s}} \frac{\Delta t}{2} \mathbf{E}_{p}$$

Charge-conserving current deposition scheme are available among which Esirkepov's is 'most' popular

Esirkepov, Comp. Phys. Comm. 135, 144 (2001)

Charge-conserving current deposition scheme are available among which Esirkepov's is 'most' popular

Charge-conserving current deposition scheme are available among which Esirkepov's is 'most' popular

Charge-conserving current deposition scheme are available among which Esirkepov's is 'most' popular

In ID, current deposition is easily done directly from charge conservation: $\partial_x J_x = -\partial_t \rho$ while other component are 'directly' projected onto the grid (see interpolation)

Esirkepov, Comp. Phys. Comm. 135, 144 (2001)

Charge-conserving current deposition scheme are available among which Esirkepov's is 'most' popular

In ID, current deposition is easily done directly from charge conservation: $\partial_x J_x = -\partial_t \rho$ while other component are 'directly' projected onto the grid (see interpolation)

In 2D & 3D, Esirkepov's method allows to conserve charge (within machine presicion)

$$(J_{x,p})_{i+\frac{1}{2},j}^{(n+\frac{1}{2})} = (J_{x,p})_{i-\frac{1}{2},j}^{(n+\frac{1}{2})} + q_s w_p \frac{\Delta x}{\Delta t} (W_x)_{i+\frac{1}{2},j}^{(n+\frac{1}{2})} (J_{y,p})_{i,j+\frac{1}{2}}^{(n+\frac{1}{2})} = (J_{y,p})_{i,j-\frac{1}{2}}^{(n+\frac{1}{2})} + q_s w_p \frac{\Delta y}{\Delta t} (W_y)_{j,i+\frac{1}{2}}^{(n+\frac{1}{2})}$$

Esirkepov, Comp. Phys. Comm. 135, 144 (2001)

The Finite-Difference Time-Domain (FDTD) method is a popular method for solving Maxwell's Equations

A. Taflove, Computation electrodynamics: The finite-difference time-domain method, 3rd Ed. (2005)

The Finite-Difference Time-Domain (FDTD) method is a popular method for solving Maxwell's Equations

The Finite-Difference Time-Domain (FDTD) method is a popular method for solving Maxwell's Equations

The Finite-Difference Time-Domain (FDTD) method is a popular method for solving Maxwell's Equations

The Finite-Difference Time-Domain (FDTD) method is a popular method for solving Maxwell's Equations

Solving Ampère's equation: $\partial_t E_y = -J_y - \partial_x B_z$
The Finite-Difference Time-Domain (FDTD) method is a popular method for solving Maxwell's Equations

Solving Ampère's equation: $\partial_t E_y = -J_y - \partial_x B_z$

time-centering
$$\frac{(E_y)^{(n+1)} - (E_y)^{(n)}}{\Delta t} = -J_y^{(n+\frac{1}{2})} - (\partial_x B_z)^{(n+\frac{1}{2})}$$

The Finite-Difference Time-Domain (FDTD) method is a popular method for solving Maxwell's Equations

Solving Ampère's equation: $\partial_t E_y = -J_y - \partial_x B_z$

time-centering
$$\frac{(E_y)^{(n+1)} - (E_y)^{(n)}}{\Delta t} = -J_y^{(n+\frac{1}{2})} - (\partial_x B_z)^{(n+\frac{1}{2})}$$
space-centering
$$\frac{(E_y)_i^{(n+1)} - (E_y)_i^{(n)}}{\Delta t} = -(J_y)_i^{(n+\frac{1}{2})} - \frac{(B_z)_{i+\frac{1}{2}}^{(n+\frac{1}{2})} - (B_z)_{i+\frac{1}{2}}^{(n-\frac{1}{2})}}{\Delta x}$$

The Finite-Difference Time-Domain (FDTD) method is a popular method for solving Maxwell's Equations

Solving Ampère's equation: $\partial_t E_y = -J_y - \partial_x B_z$

time-centering
$$\frac{(E_y)^{(n+1)} - (E_y)^{(n)}}{\Delta t} = -J_y^{(n+\frac{1}{2})} - (\partial_x B_z)^{(n+\frac{1}{2})}$$
space-centering
$$\frac{(E_y)^{(n+1)}_i - (E_y)^{(n)}_i}{\Delta t} = -(J_y)^{(n+\frac{1}{2})}_i - \frac{(B_z)^{(n+\frac{1}{2})}_{i+\frac{1}{2}} - (B_z)^{(n-\frac{1}{2})}_{i+\frac{1}{2}}}{\Delta x}$$

Solving Faraday's equation: $\partial_t B_z = \partial_x E_y$

The Finite-Difference Time-Domain (FDTD) method is a popular method for solving Maxwell's Equations

Solving Ampère's equation: $\partial_t E_y = -J_y - \partial_x B_z$

time-centering
$$\frac{(E_y)^{(n+1)} - (E_y)^{(n)}}{\Delta t} = -J_y^{(n+\frac{1}{2})} - (\partial_x B_z)^{(n+\frac{1}{2})}$$
space-centering
$$\frac{(E_y)_i^{(n+1)} - (E_y)_i^{(n)}}{\Delta t} = -(J_y)_i^{(n+\frac{1}{2})} - \frac{(B_z)_{i+\frac{1}{2}}^{(n+\frac{1}{2})} - (B_z)_{i+\frac{1}{2}}^{(n-\frac{1}{2})}}{\Delta x}$$

Solving Faraday's equation: $\partial_t B_z = \partial_x E_y$

ing
$$\frac{(B_z)_{i+\frac{1}{2}}^{(n+\frac{3}{2})} - (B_z)_{i+\frac{1}{2}}^{(n+\frac{1}{2})}}{\Delta t} = \frac{(E_y)_{i+1}^{(n+1)} - (E_y)_i^{(n+1)}}{\Delta x}$$

space/time-centering

Numerical analysis of the FDTD solvers gives you access to the numerical dispersion relation & CFL condition

Numerical analysis of the FDTD solvers gives you access to the numerical dispersion relation & CFL condition

The numerical electromagnetic wave equation in a vacuum

$$\partial_t^N \mathbf{E} = +\nabla^N \times \mathbf{B}$$
$$\partial_t^N \mathbf{B} = -\nabla^N \times \mathbf{E}$$

Numerical analysis of the FDTD solvers gives you access to the numerical dispersion relation & CFL condition

The *numerical* electromagnetic wave equation in a vacuum Г

1

Numerical analysis of the FDTD solvers gives you access to the numerical dispersion relation & CFL condition

The numerical electromagnetic wave equation in a vacuum

$$\begin{array}{l} \partial_t^N \mathbf{E} = +\nabla^N \times \mathbf{B} \\ \partial_t^N \mathbf{B} = -\nabla^N \times \mathbf{E} \end{array} \qquad \begin{array}{l} \partial_t^N F = \Delta t^{-1} \left[F^{(n+\frac{1}{2})} - F^{(n-\frac{1}{2})} \right] \\ \text{with:} \\ \partial_\mu^N F = \Delta \mu^{-1} \left[F_{i+\frac{1}{2}} - F_{i-\frac{1}{2}} \right] \end{array}$$

Using the standard technique to derive the wave equation leads to:

$$\partial_{tt}^{N}\mathbf{E} + \sum_{\mu} \partial_{\mu\mu}^{N}\mathbf{E} = 0$$

Numerical analysis of the FDTD solvers gives you access to the numerical dispersion relation & CFL condition

The numerical electromagnetic wave equation in a vacuum

1 T

Using the standard technique to derive the wave equation leads to:

$$\partial_{tt}^{N}\mathbf{E} + \sum_{\mu} \partial_{\mu\mu}^{N}\mathbf{E} = 0$$

Looking for *numerical* solution in the form:

$$(E_y)_{i,j+\frac{1}{2},k}^{(n)} = E_{y0} \exp\left\{i\left[ik_x\Delta x + (j+\frac{1}{2})k_y\Delta y + kk_z\Delta z - n\omega\Delta t\right]\right\}$$

Numerical analysis of the FDTD solvers gives you access to the numerical dispersion relation & CFL condition

Numerical analysis of the FDTD solvers gives you access to the numerical dispersion relation & CFL condition

After some algebra, one finds the *numerical dispersion relation*:

$$\frac{\sin^2\left(\omega\Delta t/2\right)}{\Delta t^2} = \sum_{\mu} \frac{\sin^2\left(k_{\mu}\Delta\mu/2\right)}{\Delta\mu^2}$$

Numerical analysis of the FDTD solvers gives you access to the numerical dispersion relation & CFL condition

After some algebra, one finds the *numerical dispersion relation*:

$$\frac{\sin^2\left(\omega\Delta t/2\right)}{\Delta t^2} = \sum_{\mu} \frac{\sin^2\left(k_{\mu}\Delta\mu/2\right)}{\Delta\mu^2}$$

There exists a stability condition: Courant-Friedrich-Lewy (CFL)

$$\Delta t < \sum_{\mu} \left(\Delta \mu^{-2} \right)^{-1/2}$$

Numerical analysis of the FDTD solvers gives you access to the numerical dispersion relation & CFL condition

After some algebra, one finds the *numerical dispersion relation*:

$$\frac{\sin^2\left(\omega\Delta t/2\right)}{\Delta t^2} = \sum_{\mu} \frac{\sin^2\left(k_{\mu}\Delta\mu/2\right)}{\Delta\mu^2}$$

There exists a stability condition: Courant-Friedrich-Lewy (CFL)

$$\Delta t < \sum_{\mu} \left(\Delta \mu^{-2} \right)^{-1/2} \xrightarrow{2D} \Delta t < \Delta x / \sqrt{2}$$

Numerical analysis of the FDTD solvers gives you access to the numerical dispersion relation & CFL condition

After some algebra, one finds the *numerical dispersion relation*:

$$\frac{\sin^2\left(\omega\Delta t/2\right)}{\Delta t^2} = \sum_{\mu} \frac{\sin^2\left(k_{\mu}\Delta\mu/2\right)}{\Delta\mu^2}$$

There exists a stability condition: Courant-Friedrich-Lewy (CFL)

$$\Delta t < \sum_{\mu} \left(\Delta \mu^{-2} \right)^{-1/2} \xrightarrow{2\mathsf{D}} \Delta t < \Delta x / \sqrt{2}$$

The FDTD solver is subject to *numerical dispersion* as the numerical light wave velocity is found to depend on its wavenumber and orientation.

A quick summary The PIC approach in a nutshell

Initializationtime step
$$n = 0$$
, time $t = 0$ Particle loading $\forall p$, define $(\mathbf{x}_p)^{n=0}$, $(\mathbf{u}_p)^{n=-\frac{1}{2}}$ Charge projection on grid $[\forall p, (\mathbf{x}_p)^{n=0}] \rightarrow \rho^{(n=0)}(\mathbf{x})$ Compute initial fields- solve Poisson on grid: $\left[\rho^{(n=0)}(\mathbf{x})\right] \rightarrow \mathbf{E}_{stat}^{(n=0)}(\mathbf{x})$ - add external fields: $\mathbf{E}^{(n=0)}(\mathbf{x}) = \mathbf{E}_{stat}^{(n=0)}(\mathbf{x}) + \mathbf{E}_{ext}^{(n=0)}(\mathbf{x})$ $\mathbf{B}^{(n=\frac{1}{2})}(\mathbf{x}) = \mathbf{B}_{ext}^{(n=\frac{1}{2})}(\mathbf{x})$

PIC loop: from time step n to n + 1, time $t = (n + 1) \Delta t$

Restart charge & current densities Save magnetic fields value (used to center magnetic fields)

 $\textbf{Interpolate fields at particle positions} \quad \forall p, \, [\mathbf{x}_p, \mathbf{E}^{(n)}(\mathbf{x}), \mathbf{B}^{(n)}(\mathbf{x})] \rightarrow \mathbf{E}_p^{(n)}, \mathbf{B}_p^{(n)}$

Push particles - compute new velocity $\forall p, \mathbf{p}_{p}^{(n-\frac{1}{2})} \begin{bmatrix} \mathbf{E}_{p}^{(n)}, \mathbf{B}_{p}^{(n)} \end{bmatrix} \mathbf{p}_{p}^{(n+\frac{1}{2})}$ - compute new position $\forall p, \mathbf{x}_{p}^{(n)} \begin{bmatrix} \mathbf{p}_{p}^{(n+\frac{1}{2})} \end{bmatrix} \mathbf{x}_{p}^{(n+1)}$

Project current onto the grid using a charge-conserving scheme

$$\left[\forall p \ \mathbf{x}_p^{(n)}, \mathbf{x}_p^{(n+1)}, \mathbf{p}_p^{(n+\frac{1}{2})}\right] \to \mathbf{J}^{(n+\frac{1}{2})}(\mathbf{x})$$

Solve Maxwell's equations

- solve Maxwell-Faraday:
$$\mathbf{E}^{(n)}(\mathbf{x}) \begin{bmatrix} \mathbf{J}^{(n+\frac{1}{2})(\mathbf{x})} \end{bmatrix} \mathbf{E}^{(n+1)}(\mathbf{x})$$

- solve Maxwell-Ampère: $\mathbf{B}^{(n+\frac{1}{2})}(\mathbf{x}) \begin{bmatrix} \mathbf{E}^{(n+1)}(\mathbf{x}) \end{bmatrix} \mathbf{B}^{(n+\frac{3}{2})}(\mathbf{x})$
- center magnetic fields: $\mathbf{B}^{(n+1)}(\mathbf{x}) = \frac{1}{2} \left(\mathbf{B}^{(n+\frac{1}{2})}(\mathbf{x}) + \mathbf{B}^{(n+\frac{3}{2})}(\mathbf{x}) \right)$

г

noise is inherent to PIC code

noise is inherent to PIC code

- some numerical instabilities have to be taken care off carefully
 - numerical heating usually requires $\Delta x \lesssim \lambda_{De}$
 - numerical-Cherenkov can also plague simulation with relativistically drifting particles

noise is inherent to PIC code

- some numerical instabilities have to be taken care off carefully
 - numerical heating usually requires $\Delta x \lesssim \lambda_{De}$
 - numerical-Cherenkov can also plague simulation with relativistically drifting particles
- PIC codes are usually very robust, beware of your results! A PIC code will most likely not crash, even if your simulation is complete non-sense!

noise is inherent to PIC code

- some numerical instabilities have to be taken care off carefully
 - numerical heating usually requires $\Delta x \lesssim \lambda_{De}$
 - numerical-Cherenkov can also plague simulation with relativistically drifting particles
- PIC codes are usually very robust, beware of your results! A PIC code will most likely not crash, even if your simulation is complete non-sense!
- I did not discuss boundary conditions nor ghost-cells

noise is inherent to PIC code

- some numerical instabilities have to be taken care off carefully
 - numerical heating usually requires $\Delta x \lesssim \lambda_{De}$
 - numerical-Cherenkov can also plague simulation with relativistically drifting particles
- PIC codes are usually very robust, beware of your results! A PIC code will most likely not crash, even if your simulation is complete non-sense!
- I did not discuss boundary conditions nor ghost-cells

noise is inherent to PIC code

- some numerical instabilities have to be taken care off carefully
 - numerical heating usually requires $\Delta x \lesssim \lambda_{De}$
 - numerical-Cherenkov can also plague simulation with relativistically drifting particles
- PIC codes are usually very robust, beware of your results! A PIC code will most likely not crash, even if your simulation is complete non-sense!
- I did not discuss boundary conditions nor ghost-cells

Outlines

- Numerical approach: how to build your PIC code
- High-performance computing: getting ready for the super-computers
- Additional modules: beyond the collisionless plasma
- Some physics highlights: what you can do with a PIC code

Large scale PIC simulation of magnetic reconnection at the earth magnetopause

Simulation box: $1280 \frac{c}{\omega_{pi}} \times 256 \frac{c}{\omega_{pi}}$ 25600×10240 PIC cells run up to $t = 800 \Omega_{ci}^{-1}$ $N_t \sim 9.5 \times 10^5$ timesteps for a total of 22×10^9 quasi-particles.

Large scale PIC simulation of magnetic reconnection at the earth magnetopause

Simulation box: $1280 \frac{c}{\omega_{pi}} \times 256 \frac{c}{\omega_{pi}}$ 25600×10240 PIC cells run up to $t = 800 \Omega_{ci}^{-1}$ $N_t \sim 9.5 \times 10^5$ timesteps for a total of 22×10^9 quasi-particles.

Required simulation time: 14 000 000 hours ~ 1600 years!!!

Large scale PIC simulation of magnetic reconnection at the earth magnetopause

Simulation box: $1280 \frac{c}{\omega_{pi}} \times 256 \frac{c}{\omega_{pi}}$ 25600×10240 PIC cells run up to $t = 800 \Omega_{ci}^{-1}$ $N_t \sim 9.5 \times 10^5$ timesteps for a total of 22×10^9 quasi-particles.

Required simulation time: 14 000 000 hours ~ 1600 years!!!

Solution: share the work on 16384 CPUs !!!

Tianhe-2 **34 PF**: **17 MW**

Tianhe-2 34 PF: Exascale 1000 PF: 500 MW

Tianhe-2 34 PF: Exascale 1000 PF: 17 MW 500 MW

Tianhe-2 34 PF: Exascale 1000 PF: 17 MW 500 MW

Parallelism*

massive hybrid MPI-OpenMP dynamic (load balance)

Memory

shared vs. distributed cache use

Vectorization**

Parallel I/O hdf5, openPMD

Tianhe-2 34 PF: Exascale 1000 PF: 17 MW 500 MW

Parallelism*

massive hybrid MPI-OpenMP dynamic (load balance)

Memory

shared vs. distributed cache use

Vectorization**

Parallel I/O hdf5, openPMD

*Derouillat *et al.*, Comp. Phys. Comm. **222**, 351 (2018) **Beck *et al.*, arXiv:1810.03949 Step 1: Parallelization PIC codes are well adapted to massive parallelism Step 1: Parallelization PIC codes are well adapted to massive parallelism

My Simulation (LWFA)

Step 1: Parallelization PIC codes are well adapted to massive parallelism

My Simulation (LWFA) $[\mu m]$ λ $x [\mu m]$

My Simulation (LWFA) y [µm] $x [\mu m]$ **Domain Decomposition**

My Simulation (LWFA) y [µm] $x [\mu m]$ **Domain Decomposition**

My Simulation (LWFA) 140 120 100 y [*μ*m] 80 60 40 20 00 20 100 40 60 80 $x [\mu m]$ **Domain Decomposition**

My Super-Computer CE computing element CE-0 CE-I MPI Message CE-2 CE-3 Passing Interface CE-4 CE-5 CE-6 CE-7

My Simulation (LWFA) 140 120 100 y [*μ*m] 80 60 40 20 00 20 100 40 60 80 $x [\mu m]$ **Domain Decomposition**

My Super-Computer CE computing element CE-0 CE-I MPI Message CE-2 CE-3 Passing Interface CE-4 CE-5 CE-6 CE-7

My Simulation (LWFA)

----- Patch Decomposition

Patches X coordinate

Patches X coordinate

Step 1: Parallelization Hybrid + Dynamic Load Balancing

Step 1: Parallelization Hybrid + Dynamic Load Balancing

- Scalar processing
 - traditional mode
 - one operation produces one result

SIMD processing

- with SSE / SSE2
- one operation produces multiple results

Beck et al., arXiv:1810.03949

Smart (particles) operators:

- interpolator, pusher, projector

Beck et al., arXiv:1810.03949

Smart (particles) operators:

- interpolator, pusher, projector

Smart (particles) data structures:

- beware random mem. access
- contiguous memory
- sort at all times!

Beck et al., arXiv:1810.03949

Step 2: Vectorization SMILEI uses an adaptive vectorization approach

Step 2: Vectorization SMILEI uses an adaptive vectorization approach

Step 2: Vectorization Laser-driven hole-boring

@ 32 PPC : speed-up x 1.5

Step 2: Vectorization Laser-driven hole-boring

Step 2: Vectorization Laser-driven hole-boring

Step 2: Vectorization Weibel-mediated collisionless shocks

@ 32 PPC : speed-up x 1.5

Step 2: Vectorization Weibel-mediated collisionless shocks

Step 2: Vectorization Weibel-mediated collisionless shocks

Outlines

- Numerical approach: how to build your PIC code
- Parallelization: getting ready for the super-computers
- Additional modules: beyond the collisionless plasma
- Some physics highlights: what you can do with a PIC code

Collisions are computed inside the cell

Collisions are computed inside the cell

To avoid the N-body problem, quasi-particles in the cell are randomly "paired"

Collisions are computed inside the cell

To avoid the N-body problem, quasi-particles in the cell are randomly "paired"

Collisions are computed inside the cell

To avoid the N-body problem, quasi-particles in the cell are randomly "paired"

A single particle goes through many $(N \gg 1)$ collisions at small angle θ which translates in a total deflection angle χ (not necessarily small)

Collisions are computed inside the cell

To avoid the N-body problem, quasi-particles in the cell are randomly "paired"

A single particle goes through many $(N \gg 1)$ collisions at small angle θ which translates in a total deflection angle χ (not necessarily small)

for each pair (Monte-Carlo)

- compute the collision rate
- compute the deflection angle
- deflect one or both particles

Nanbu, Phys. Rev. E **55**, 4642 (1997); J. Comp. Phys. **145**, 639 (1998) F. Pérez et al., Phys. Plasmas **19**, 083104 (2012)

PIC codes are then able to treat purely collisional processes

J. Derouillat et al., *SMILEI: a collaborative, open-source, multi-purpose PIC code for plasma simulation,* to be submitted (available upon request)

Similarly field and collisional ionization can be treated using a Monte-Carlo approach

Field ionization of Carbon by a 5×10^{16} W/cm² 20 fs laser pulse

Stopping power of a cold aluminium plasma of density 10²¹ cm⁻³

R. Nuter *et al.*, Phys. Plasmas 18, 033107 (2011); F. Pérez et al., Phys. Plasmas 19, 083104 (2012)
J. Derouillat et al., *SMILEI: a collaborative, open-source, multi-purpose PIC code for plasma simulation,* to be submitted (available upon request)

Adding Quantum Electrodynamics (QED) effect is also very interesting for forthcoming multi-petawatt facilities

Adding Quantum Electrodynamics (QED) effect is also very interesting for forthcoming multi-petawatt facilities

Adding Quantum Electrodynamics (QED) effect is also very interesting for forthcoming multi-petawatt facilities

Outlines

- Numerical approach: how to build your PIC code
- Parallelization: getting ready for the super-computers
- Additional modules: beyond the collisionless plasma
- Some physics highlights: what you can do with a PIC code

Relativistically-Induced Transparency

Relativistically-Induced Transparency

E. Siminos et al., Phys. Rev. E 86, 056404 (2012)

E. Siminos et al., Phys. Rev. E 86, 056404 (2012)

Weibel instability in the presence of an external magnetic field

A. Grassi et al., Phys. Rev. E (in press)

2D and 3D simulations on super-computers will be necessary here

2D and 3D simulations on super-computers will be necessary here

High-harmonic generation & electron acceleration from laser-solid interaction

G. Bouchard, F. Quéré, CEA/IRAMIS

2D and 3D simulations on super-computers will be necessary here

High-harmonic generation & electron acceleration from laser-solid interaction

2D and 3D simulations on super-computers will be necessary here

High-harmonic generation & electron acceleration from laser-solid interaction

Laser wakefield acceleration of electrons

2D and 3D simulations on super-computers will be necessary here

High-harmonic generation & electron acceleration from laser-solid interaction

Laser wakefield acceleration of electrons

A. Sävert et al., Phys. Rev. Lett. 115, 055002 (2015)

PIC codes are very versatile: they can be applied to a wide range of physical scenarii, from laser-plasma interaction to astrophysics

PIC codes are very versatile: they can be applied to a wide range of physical scenarii, from laser-plasma interaction to astrophysics

M. Lobet et al., arXiv:1510.02301v2 (2015)

Plotnikov, Grassi & Grech, MNRAS

 PIC codes are very popular, versatile & efficient tools for plasma simulation

- PIC codes are very popular, versatile & efficient tools for plasma simulation
- A large variety of physical problems can be addressed using PIC codes

- PIC codes are very popular, versatile & efficient tools for plasma simulation
- A large variety of physical problems can be addressed using PIC codes
- Additional physics modules can be implemented in PIC codes, but the physics cannot be scaled anymore (ω_r needs to be defined!)

- PIC codes are very popular, versatile & efficient tools for plasma simulation
- A large variety of physical problems can be addressed using PIC codes
- Additional physics modules can be implemented in PIC codes, but the physics cannot be scaled anymore (ω_r needs to be defined!)
- The PIC method is conceptually simple & can be efficiently implemented in a (massively) parallel framework
Conclusions

- PIC codes are very popular, versatile & efficient tools for plasma simulation
- A large variety of physical problems can be addressed using PIC codes
- Additional physics modules can be implemented in PIC codes, but the physics cannot be scaled anymore (ω_r needs to be defined!)
- The PIC method is conceptually simple & can be efficiently implemented in a (massively) parallel framework
- Implementation on new & future architectures requires a strong input (co-development) from HPC specialists

Checkout SMILEI !!!

Code, Diagnostics/visualization tools and tutorials available online!

Smilei is a Particle-In-Cell code for plasma simulation. Open-source, collaborative, user-friendly and designed for high performances on super-computers, it is applied to a wide range of physics studies: from relativistic laser-plasma interaction to astrophysics.

Download

GitHub

Publications

Tutorials

http://www.maisondelasimulation.fr/smilei

Checkout SMILEI !!!

Code, Diagnostics/visualization tools and tutorials available online!

http://www.maisondelasimulation.fr/smilei