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The Particle-In-Cell (PIC) method is a central tool for simulation
over a wide range of physics studies

Cosmology Space propulsion (Plasma thruster)
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The Particle-In-Cell (PIC) method is a central tool for simulation
over a wide range of physics studies

Cosmology Space propulsion (Plasma thruster)

L.
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» Conceptually simple
- Efficiently implemented on (massively) parallel super-computers
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| st Remark

Normalization: the Vlasov-Maxwell (relativistic) description
provides us with a set of natural units
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Normalization: the Vlasov-Maxwell (relativistic) description

provides us with a set of natural
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The value of wy is not defined a priori, and acts as a scaling factor.
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2nd Remark
The Particle-In-Cell method integrates Vlasov Equation

along the trajectories of so-called quasi-particles

Vlasov Eq. is a partial differential equation (PDE) in Ns+Nv phase-space:
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The Particle-In-Cell method integrates Vlasov Equation

along the trajectories of so-called quasi-particles

Vlasov Eq. is a partial differential equation (PDE) in Ns+Nv phase-space:
p
atfs ' vfs FL'fos =0

Mgy

Direct integration (Vlasov codes) has tremendous computational cost!

The PIC ansatz consists in decomposing the distribution fct:

s(t, %, p) Z wp S Xp(t)) o(P — Pp(l))
f \

Shape—funcﬂon Dirac-distribution



2nd Remark
The Particle-In-Cell method integrates Vlasov Equation
along the trajectories of so-called quasi-particles

Injecting this ansatz in Vlasov Eq., multiplying by p and integrating over all momenta p

Z’wp

o) [axpS(X — X,) + O0xS(x — Xp)]

msvp

+ Z wp S p) [0tPp — s (E+ vy, xB)] =0
Let us now integrate N space:

Do, [ [0, STR=xp DS x — )]

+ZS: wp/dXS(X_Xp) Opp —¢s (E+v, xB)| =0

Finally leading to solving for all p:
OiPp = qs (Ep + v x By) with (E,B), = /dx (E,B)(x) S(x — x,)
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3rd Remark
If one does things in a smart way, only Maxwell-Ampere

& Maxwell-Faraday Eqgs. need to be solved

Take the divergence of Maxwell-Ampere’s Eq.:

=

o,V-E4+V-J=0
Assume charge Is conserved, e, Op+V-J =0

One gets: 0;(V-E —p) =0

If at time t=0, Poisson & Gauss Egs. are satisfied,
and If current deposition 1s made In a way that conserve charge,

then solving only Maxwell-Ampere & Maxwell-Faraday ensures
that both Egs. remain satisfied at later time.
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Initialization of a PIC simulation
p,d

E B

|) for each species of your plasma, create your quasi-particles
e.g. defining the species density, velocrity and temperature profiles

2) loop over all particles and project charge and current density
onto the grid

3) knowing the charge density solve Poisson’s Eq. to get
the electrostatic field

4) add any (user defined) external fields provided they are divergence-free
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E B

Gather fields at particle position
[Ea B] — [Ep7 Bp]

Solve Maxwell’s Egs. Push all particles
8tE = -J+V x B dtup _ ds F,
Vp Mms
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The Particle-In-Cell loop
p,d

E B

Gather fields at particle position
[Ea B] — [Ep7 Bp]

Solve Maxwell’s Egs. _g Push all particles
(9tE = —-J+V x B At dtu _ ds F,
Vp Tomg
OB =-VxE < diXp = Up/Vp

Project current densities on grid*

Xp, Pp| = [P, J]

* using a charge conserving scheme
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* Numerical approach: how to build up your PIC code

» Parallelization: getting ready for the super-computers

- Additional modules: beyond the collisionless plasma

 Some physics highlights: what you can do with a PIC code



Outlines

* Numerical approach: how to build up your PIC code

» Parallelization: getting ready for the super-computers

- Additional modules: beyond the collisionless plasma

 Some physics highlights: what you can do with a PIC code



Step |
Field gathering: interpolation at particle position



Step |
Field gathering: interpolation at particle position

E. B



Step |
Field gathering: interpolation at particle position




Step |
Field gathering: interpolation at particle position




Step |
Field gathering: interpolation at particle position




Step |
Field gathering: interpolation at particle position




Step |
Field gathering: interpolation at particle position




Step |
Field gathering: interpolation at particle position

$O%) = Axs(x),
rl if |x|] < ! AX
sWx) = | -2
.O otherwise,
'(1 ‘XD if x| < Ax
$3(x) = 1 AX -
|0 otherwise,
_ (3 4 ;1 x \?2 1
(E,B), = [dx(E,B)(x)S(x — xp) S-S5 i< ax
4 3 \ Ax 2
By =149 2 1 x \° .1 3
— 1——’— if — Ax < |x| < = Ax,
8 3 | Ax 2 2
0 otherwise,
(2 3/7x\2 3| x 3.
— 1——(—) —|——‘—‘ if |x|] < Ax,
3 2 \ AX 41 Ax
$Wx) = {4 1 x 1\’ _
— 1——‘—‘ if Ax < |x| < 2 Ax,
3 2 | AX
0 otherwise.




Step |

Field gathering: interpolation at particle position

$O%) = Axs(x),

sV(x) =

4

, 1
1 if |x| < = Ax,
2

0 otherwise,

r X .
(1 — ‘—D if [x| < Ax,
AX

otherwise.

a(2) _
S(X) =
|0 otherwise,
(3 4 / x \?]| . 1
- 1——<—) if |x| < = Ax,
4 3 \ Ax 2
By =149 2 1 x \* 1 3
— 1——)— if — Ax < |x| < = Ax,
8 3 1 Ax 2 2
0 otherwise,
(2 3/7x\2 3| x 3.
— 1——(—) +—‘—‘ if |x| < Ax,
3 2 \ AX 41 Ax
sWx) =144 11 x 1\ ,
- 1——)—‘ if Ax < [x| < 2 Ax,
3 2 X
10




Step 2
The Boris leap-frog pusher is a very popular method
to advance particles




Step 2
The Boris leap-frog pusher is a very popular method
to advance particles

nAt




Step 2
The Boris leap-frog pusher is a very popular method
to advance particles




Step 2
The Boris leap-frog pusher is a very popular method
to advance particles

nAt

| n
|371(9)

g™ M




Step 2
The Boris leap-frog pusher is a very popular method
to advance particles




Step 2
The Boris leap-frog pusher is a very popular method
to advance particles




Step 2
The Boris leap-frog pusher is a very popular method
to advance particles

7\

nAt

| nl n
| 371(9)|331(9+1)

g™ Bh)

o @ o o - o o




Step 2
The Boris leap-frog pusher is a very popular method
to advance particles

nAt
*-——o o O O o O
| 371(9“) | %(9“—'_1:)
pn) g
) | |
(nr5) o (nt3)
P p

o @ C. o - o o




Step 2
The Boris leap-frog pusher is a very popular method
to advance particles

nAt
O | O | @ O | O @ O O
| 37;(9“) | w}(?n-|-1:) |
g ) | |
? I I I
(n73) D)
P p
® 9 9 ® ® ® ®




Step 2
The Boris leap-frog pusher is a very popular method
to advance particles




Step 2
The Boris leap-frog pusher is a very popular method
to advance particles




Step 2
The Boris leap-frog pusher is a very popular method
to advance particles




Step 2
The Boris leap-frog pusher is a very popular method
to advance particles




Step 2
The Boris leap-frog pusher is a very popular method
to advance particles




Step 3
Charge-conserving current deposition scheme are available
among which Esirkepov’s is ‘most’ popular
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Step 3

Charge-conserving current deposition scheme are available
among which Esirkepov’s is ‘most’ popular

In I D, current deposition Is easily done directly from charge conservation:

8$Ja; — —(9,5,0

while other component are ‘directly’ projected onto the grid (see interpolation)

In 2D & 3D, Esirkepov's method allows to conserve charge (within machine presicion)
1 1 1
(n+3) (n+3) Az (n+3)
J 27 = (Jy 2"+ gsw W, 2
( ,p)H%,j ( ,p)i_%,j Us Wp “A 3 ( )i+%,j
1 1 1
(n+35) (n+35) Ay (n+35)
J 2 =(J 2+ qsw, — (W, 7
( y,p)i)jJr% ( y,p)m_% s Wp "A 7 ( y)jyiJr%

Esirkepov, Comp. Phys. Comm. 135, 144 (2001)



Step 4
The Finite-Difference Time-Domain (FDTD) method is
a popular method for solving Maxwell’s Equations

(i +1)Ax - - - IL’

Y
B
2 >
E,,J, /' B-
1™
‘ - —-(k+1)Az
E.. J,
E'I 9 ]l,
1IAx — - — =y - - -kAz
P |
| |
| |
jAy (J +1)Ay

A. Taflove, Computation electrodynamics: The finite-difference time-domain method, 3rd Ed. (2005)
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nAt j(n+3) !
@ o — <9 @ O o @ *—

() gnt3)

E®™ gt

Solving Ampere’s equation: O, E, = —J, — 0,8,

(B, — (B,)™ _ _J(n+%)
At 7

1

time-centering — (0,B,)"*3)

A. Taflove, Computation electrodynamics: The finite-difference time-domain method, 3rd Ed. (2005)
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@ <0 <9 o O @ o—
() Blnt3) glnty)

EM™ \ gt

Solving Ampere’s equation: O, E, = —J, — 0,8,

n+1 n 1
time-centering (Ey) "D — (B,)™ __gnt3) g (n+3)
(n+3) (n—
(n+1) (n) (B:) 1% —(B2) 1
space-centering (Ey); — (Ey); — (J )( +%) B P 1+
At Yy Ax

Solving Faraday’s equation: 0;B, = 0, F,

A. Taflove, Computation electrodynamics: The finite-difference time-domain method, 3rd Ed. (2005)



Step 4
The Finite-Difference Time-Domain (FDTD) method is

a popular method for solving Maxwell’s Equations
—

nAt J(n+3)
@ <0 <9 o
() Blnt3) glnty)

EM™ \ gt

Solving Ampere’s equation: 0: L,
n+1 n £
(Ey)( ) _ (Ey)( ) _ _J§n+2) B (aa:Bz)(n+§)

— —J, - 0,B,

time-centering
At il :
n § T —
(n+1) (n) (B2) 1% —(B:)
space-centering (Ey); — (Ey); — (J )@JF%) B P 1+
At J7 Ax

Solving Faraday’s equation: 0;B, = 0, F,

3 1
(n+35) (n+35)
(BZ)i+%2 o (BZ)Z_|_%2

space/time-centering
At Ax

A. Taflove, Computation electrodynamics: The finite-difference time-domain method, 3rd Ed. (2005)
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The numerical electromagnetic wave eguation in a vacuum

1 1
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OE=+V¥xB O; F = At {F 2 = F 2}
WILN.

0, B=—-V" xE 0y F=Ap™? [F,+1—F. 1}
2 5 2—5

Using the standard technique to derive the wave equation leads to:

ONE + Z OV E =0
Looking for numerical solution In the form:

(Ey)ET;)—I—l = E,o exp{z [ikan: + (J + %)kyAy
i +kk, Az — nwAtl}
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Step 4
Numerical analysis of the FDTD solvers gives you access to
the numerical dispersion relation & CFL condition

After some algebra, one finds the numerical dispersion relation:

sin? (wWAt/2) Z sin® (k,Ap/2)
At? B A2

7
There exists a stability condition: Courant-Friedrich-Lewy (CFL)

A< S (ap) P 2 At < Az/V2
L

Axr = Ay

The FDTD solver is subject to numerical
dispersion as the numerical light wave
velocity I1s found to depend on its
wavenumber and orientation.

)
<

=
=2

k.Ax
Nuter et al., Eur. Phys. J. D (2014); All papers by B. Godfrey, from the 70’s up to now !!!



A quick summary
The PIC approach in a nutshell

Initialization time step n =0, time t = 0

1
Particle loading Vp, define (x,)™=°, (up)"~" 2
Charge projection on grid [Vp, (xp)n:o] - p(n=0) (x)

Compute initial fields - solve Poisson on grid: [p(”zo)(x) — B9 (x)

stat

- add external fields: E"=? (x) = E77? (x) + B (x)
1

stat ext

1 net
B("=2)(x) = B! 2’ (x)

ext

PIC loop: from time step n to n + 1, time t = (n + 1) At

Restart charge & current densities
Save magnetic fields value (used to center magnetic fields)

Interpolate fields at particle positions Vp, [x,, E™ (x), B (x)] — E§,"), Bj([,n)

1 1
Push particles - compute new velocity Vp, p,([,n_ 2) [EJ(D"), B,(on)] p,(, +2)

1
41
- compute new position Vp, x,(on) [pz([,n 2)] xén'*'l)

Project current onto the grid using a charge-conserving scheme

(n) _(n+1) (n+3) 1
Vp xp 7xP 7pP 2 _)J(n+2)(x)

Solve Maxwell’s equations

1
- solve Maxwell-Faraday: E™ (x) [J(’”'E)(x)] E("“)(x)
- 3
- solve Maxwell-Ampere: B(n+§)(x) [E("+1)(x)] B("+§)(x)

1 3
- center magnetic fields: BV (x) = z (B("+§)(x) - B("+§)(x))
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* Numerical approach: how to build your PIC code

- High-performance computing:
getting ready for the super-computers

- Additional modules: beyond the collisionless plasma

* Some physics highlights: what you can do with a PIC code
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Large scale PIC simulation of
magnetic reconnection at the earth magnetopause

160 EEEE—
140§
120

100
160

140

120 === -

10

140

120

100

550 600 650 700

Simulation box: 1280 —= x 256 =

25600 x 10240 PIC cells
runupto t =800 "
N; ~ 9.5 x 10° timesteps
for a total of 22 x 10 quasi-particles.

Required simulation time:
|4 000 000 hours ~ 1600 years!!!

Solution:
share the work on 16384 CPUs !!!
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High-performance computing new paradigms & challenges

Tianhe-2 34 PF: Exascale 1000 PF:
17 MW T 500 MW

Number of

| 1 E
.+ _ .. . Frequency (MHz) ;i

Power (Watts) -

logical cores _

-1 | | | ] 1 |
184970 1980 1990 2000 5010 5020 2030
Year

*Derouillat et al., Comp. Phys. Comm. 222, 351 (2018)
**Beck et al., arXiv:1810.03949

massive
hybrid MPI-OpenMP
dynamic (load balance)

Memory

shared vs. distributed
cache use

Vectorization™”
SIMD

Parallel 1/0
hdf5, openPMD
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Step 2: Vectorization
Vectorization in a nutshell

Introducing SIMD: Single
Instruction, Multiple Data

e Scalar processing ¢ SIMD processing
traditional mode with SSE / SSE2
one operation produces one operation produces

one result multiple results

Smart (particles) operators:
- Interpolator, pusher, projector

Smart (particles) data structures:
- beware random mem. access

- contiguous memory

- sort at all times!

Beck er al., arXiv:1810.03949
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Step 2: Vectorization
Laser-driven hole-boring
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Welbel-mediated collisionless shocks
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Collisions can be introduced using an ad-hoc Monte-Carlo module

Collisions are computed inside the cell

To avoid the N-body problem, quasi-particles in the cell are randomly “paired”
species | ~_4 . B
N\
species 2 - ) N

A single particle goes through many (N > 1) collisions at small angle 6
which translates in a total deflection angle X (not necessarily small)

Y for each pair (Monte-Carlo)
\ - compute the collision rate

- compute the deflection angle
2 - deflect one or both particles

.
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*

Nanbu, Phys. Rev. E 55, 4642 (1997); J. Comp. Phys. 145, 639 (1998)
F. Pérez et al., Phys. Plasmas 19, 083104 (2012)



PIC codes are then able to treat purely collisional processes

Thermalization Isotropization
(hydrogen plasma) (electron plasma
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J. Derouillat et al., SMILEI: a collaborative, open-source, multi-purpose PIC code for plasma simulation,
to be submitted (available upon request)



Similarly field and collisional ionization can be treated using
a Monte-Carlo approach

Field ionization of Carbon by Stopping power of a cold aluminium
a 5x10'6W/ecm2 20 fs laser pulse plasma of density 102! cm-3
100 ‘ "I .-.=T| .‘ T T | | ' | ! |
NI
l' ! ::"l - N;—c :_ — _:
/_\075* ::= := A, 8 :. Theory
o R - 723 : |
= i fi - Zr=4 2 [
= 0.50|- 181 i §
S 1k o
N ': i K o
= {111 g
0208 1HEI! : >
:.'l Bl 8
HE 2
' B 18
A5 Ea 100 b
000 y 8 2 16 07 107 107 107 10° 10° 10

Incident electron energy [keV]|

@)

~~
\

P
o

R. Nuter ef al., Phys. Plasmas 18, 033107 (2011); F. Pérez et al., Phys. Plasmas 19, 083104 (2012)

J. Derouillat et al., SMILEI: a collaborative, open-source, multi-purpose PIC code for plasma simulation,
to be submitted (available upon request)



Adding Quantum Electrodynamics (QED) effect is also
very interesting for forthcoming multi-petawatt facilities



Adding Quantum Electrodynamics (QED) effect is also
very interesting for forthcoming multi-petawatt facilities

Nonlinear Thomson and
Compton scattering

e +nyL—e +

Bremsstrahlung

e

N\

.zt
~ 0
N
@

Z e ‘1



Adding Quantum Electrodynamics (QED) effect is also
very interesting for forthcoming multi-petawatt facilities

Nonlinear Thomson and Multi-Photon
Compton scattering Breit-Wheeler Process
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Outlines

* Numerical approach: how to build your PIC code

» Parallelization: getting ready for the super-computers

- Additional modules: beyond the collisionless plasma

 Some physics highlights: what you can do with a PIC code
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PIC codes are an excellent tool to support theoretical modelling
Even |D simulation can bring a deep insight into the physics at play

Relativistically-Induced Transparency
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Weibel instability in the presence
of an external magnetic field
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PIC codes can help design & interpret experimental campaigns
2D and 3D simulations on super-computers will be necessary here

High-harmonic generation
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Laser wakefield acceleration
of electrons
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PIC codes can help design & interpret experimental campaigns
2D and 3D simulations on super-computers will be necessary here
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PIC codes are very versatile: they can be applied to a wide range
of physical scenarii, from laser-plasma interaction to astrophysics
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PIC codes are very versatile: they can be applied to a wide range
of physical scenarii, from laser-plasma interaction to astrophysics

Pair production on
multi-petawatt laser facilities
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Relativistic shocks
in electron-positron plasmas
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Conclusions

» PIC codes are very popular, versatile & efficient tools
for plasma simulation

- A can be addressed
using PIC codes

. can be implemented in PIC codes,
but the physics cannot be scaled anymore (w, needs to be defined!)

+ The PIC method is conceptually simple & can be efficiently
implemented in a (massively) parallel framework

 Implementation on new & future architectures requires
a strong input (co-development) from HPC specialists



Checkout SMILEI '

Code, Diagnostics/visualization tools and tutorials
available online!

l Smilei ) Overview Understand Use

Smiilei is a Particle-In-Cell code for plasma simulation. Open-source, collaborative, user-friendly and

designed for high performances on super-computers, it is applied to a wide range of physics studies:
from relativistic laser-plasma interaction to astrophysics.
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Download GitHub Partners Publications Tutorials

http://www.maisondelasimulation.fr/smile1
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