The Particle-In-Cell (PIC)
simulation of plasmas

Mickael Grech, LULI, CNRS
mickael.grech@gmail.com

Les Houches, Mai 2019

mailto:mickael.grech@polytechnique.edu?subject=

References

References

Plasma Physics via Computer Simulation
C. K Birdsall & A. B. Langdon

PLASMA PHYSICS

VIA COMPUTER
SIMULATION

C K BIRDSALL
A B LANGDON

References

INSTITUTEUF PHYSICS
SERIES IN PLASMA PHYSICS
r -|

ADVANCES IN

The Finite-Difference Time-Domain Method

Plasma Physics via Computer Simulation
C. K Birdsall & A. B. Langdon

Computational Electrodynamics
A. Taflove

ALLEN TAFLOVE
EDITOR

References

INSTITUTE OF PHYSICS
SERIES IN PLASMA PHYSICS

ADVANCES IN

lethod S U

Plasma Physics via Computer Simulation
C. K Birdsall & A. B. Langdon

' _ THIRD EDITION
Computational Electrodynamics

A. Taflove

Numerical Recipies
W. H. Press et al.

The Particle-In-Cell (PIC) method is a central tool for simulation
over a wide range of physics studies

The Particle-In-Cell (PIC) method is a central tool for simulation
over a wide range of physics studies

Cosmology

source: K. Heitmann,Argonne National Lab

The Particle-In-Cell (PIC) method is a central tool for simulation
over a wide range of physics studies

Cosmology Space propulsion (Plasma thruster)

source: K. Heitmann, Argonne National Lab

source: Gauss Center for Supercomputing

The Particle-In-Cell (PIC) method is a central tool for simulation
over a wide range of physics studies

Cosmology Space propulsion (Plasma thruster)

source: K. Heitmann, Argonne National Lab

source: Gauss Center for Supercomputing

Space plasmas & astrophysics

L7
—6

20
1.000e+01
o 5
0 8
5
0

-5
—4

3
2
1
1.000e-02

source: SMILEI dev-team

90 9

The Particle-In-Cell (PIC) method is a central tool for simulation
over a wide range of physics studies

Cosmology Space propulsion (Plasma thruster)

source: K. Heitmann, Argonne National Lab source: Gauss Center for Supercomputing

Space plasmas & astrophysics Laser plasma interaction

0
200 100 200 300 400 500

-5.500e-03
450
-0.01

210

350 — 0015
PO 1.000e+01 400
/ ' 300 —-0.02
0 9
350
5 [8 250 [-0.025
| 300
: 200 -3.000e-02
¢ 250 o ! 150
F , 100
» 200 ’ . v 50 2.0e+00
N 150 [1.5
2 L
1 100 | o5
1.000e-02 _0
‘ —-05
90 0 _ -]
t 15
source: SMILE| dev-team /500 2.06400

source: SMILE| dev-team

The Particle-In-Cell (PIC) method is a central tool for simulation
over a wide range of physics studies

Cosmology Space propulsion (Plasma thruster)

L.

-
source: K. Heitmann, Argonne National Lab source: Gauss Center for Supercomputing
. .. Space plasmas & astrophysics Laser plasma interaction
0 200 01 20 30 40 g
E ; 150 ; [_ ?gemo
source: SMILEI dev-team — -

source: SMILE| dev-team

» Conceptually simple
- Efficiently implemented on (massively) parallel super-computers

Our starting point is the Vlasov-Maxwell description
for a collisionless plasma

Our starting point is the Vlasov-Maxwell description
for a collisionless plasma

Plasma

atfs | P 'vfs‘l‘FL'vpfs:O

Mgy

Our starting point is the Vlasov-Maxwell description
for a collisionless plasma

Our starting point is the Vlasov-Maxwell description
for a collisionless plasma

Plasma

atfs | P 'st‘l‘FL'vpfs:O

Mgy

p(t,X) — /dpfs(t,X, p)

F;, =q, | E B
LCI(JFmeyX) B D
J(t,x)=gqs [|dp fs(t,x,p)

Mg~y

Electromagnetic Field

1
V-E=L OE=——J+c¢*V x B
€0 €0

| st Remark

Normalization: the Vlasov-Maxwell (relativistic) description
provides us with a set of natural units

Plasma

atfs | D 'vfs+FL'vpfs:O

Mgy

Electromagnetic Field

V-E=p oE=-J+V xB
V-B=0 5’tB:—V><E

Velocity

Charge

Mass
Momentum
Energy, Temperature
Time

Length

Number density
Current density
Pressure
Electric field
Magnetic field
Poynting flux

N, = €0 Mew?/e
ecn,

Me C° Ny

Me CW,-/ €
Me Wy /€

Me €Ny /2

| st Remark

Normalization: the Vlasov-Maxwell (relativistic) description

provides us with a set of natural

Plasma

atfs | D 'vfs‘l'FL’vpfs:O

mg~y

Electromagnetic Field

(9tE = —-J+V x B

V-E=p
V-B=0

atB:—VXE

Number density
Current density
Pressure
Electric field
Magnetic field
Poynting flux

N, = €9 Me w?/e?
ecn,

Me C° N,

Me CW,-/ €
Me Wy /€

Me €Ny /2

The value of wy is not defined a priori, and acts as a scaling factor.

units

Velocity C

Charge €

Mass Me

Momentum Me C

Energy, Temperature MeC?

‘Time Wt ‘
Length /Wy

2nd Remark
The Particle-In-Cell method integrates Vlasov Equation

along the trajectories of so-called quasi-particles

Vlasov Eq. is a partial differential equation (PDE) in Ns+Nv phase-space:
p
atfs ' vfs FL'fos =0

Mgy

2nd Remark
The Particle-In-Cell method integrates Vlasov Equation

along the trajectories of so-called quasi-particles

Vlasov Eq. is a partial differential equation (PDE) in Ns+Nv phase-space:
p
atfs ' vfs FL'fos =0

Mgy

Direct integration (Vlasov codes) has tremendous computational cost!

2nd Remark
The Particle-In-Cell method integrates Vlasov Equation

along the trajectories of so-called quasi-particles

Vlasov Eq. is a partial differential equation (PDE) in Ns+Nv phase-space:
p
atfs ' vfs FL'fos =0

Mgy

Direct integration (Vlasov codes) has tremendous computational cost!

The PIC ansatz consists in decomposing the distribution fct:

s(t, %, p) Z wp S Xp(t)) o(P — Pp(l))
f \

Shape—funcﬂon Dirac-distribution

2nd Remark
The Particle-In-Cell method integrates Vlasov Equation
along the trajectories of so-called quasi-particles

Injecting this ansatz in Vlasov Eq., multiplying by p and integrating over all momenta p

Z’wp

o) [axpS(X — X,) + O0xS(x — Xp)]

msvp

+ Z wp S p) [0tPp — s (E+ vy, xB)] =0
Let us now integrate N space:

Do, [[0, STR=xp DS x —)]

+ZS: wp/dXS(X_Xp) Opp —¢s (E+v, xB)| =0

Finally leading to solving for all p:
OiPp = qs (Ep + v x By) with (E,B), = /dx (E,B)(x) S(x — x,)

3rd Remark
If one does things in a smart way, only Maxwell-Ampere
& Maxwell-Faraday Eqgs. need to be solved

3rd Remark
If one does things in a smart way, only Maxwell-Ampere

& Maxwell-Faraday Eqgs. need to be solved

Take the divergence of Maxwell-Ampere’s Eq.:

=

o,V-E4+V-J=0

3rd Remark
If one does things in a smart way, only Maxwell-Ampere
& Maxwell-Faraday Eqgs. need to be solved

Take the divergence of Maxwell-Ampere’s Eq.:

=

o,V-E4+V-J=0

Assume charge Is conserved, e, Op+V-J =0

3rd Remark
If one does things in a smart way, only Maxwell-Ampere
& Maxwell-Faraday Eqgs. need to be solved

Take the divergence of Maxwell-Ampere’s Eq.:

=

o,V-E4+V-J=0

Assume charge Is conserved, e, Op+V-J =0

One gets: 0;(V-E —p) =0

3rd Remark
If one does things in a smart way, only Maxwell-Ampere

& Maxwell-Faraday Eqgs. need to be solved

Take the divergence of Maxwell-Ampere’s Eq.:

=

o,V-E4+V-J=0
Assume charge Is conserved, e, Op+V-J =0

One gets: 0;(V-E —p) =0

If at time t=0, Poisson & Gauss Egs. are satisfied,
and If current deposition 1s made In a way that conserve charge,

then solving only Maxwell-Ampere & Maxwell-Faraday ensures
that both Egs. remain satisfied at later time.

Initialization of a PIC simulation

Initialization of a PIC simulation

|) for each species of your plasma, create your quasi-particles
e.g. defining the species density, velocrity and temperature profiles

Initialization of a PIC simulation
p,d

|) for each species of your plasma, create your quasi-particles
e.g. defining the species density, velocrity and temperature profiles

2) loop over all particles and project charge and current density
onto the grid

Initialization of a PIC simulation
p,d

|) for each species of your plasma, create your quasi-particles
e.g. defining the species density, velocrity and temperature profiles

2) loop over all particles and project charge and current density
onto the grid

3) knowing the charge density solve Poisson’s Eq. to get
the electrostatic field

Initialization of a PIC simulation
p,d

E B

|) for each species of your plasma, create your quasi-particles
e.g. defining the species density, velocrity and temperature profiles

2) loop over all particles and project charge and current density
onto the grid

3) knowing the charge density solve Poisson’s Eq. to get
the electrostatic field

4) add any (user defined) external fields provided they are divergence-free

The Particle-In-Cell loop

p,d

E B

The Particle-In-Cell loop
p,d

E B

Gather fields at particle position
[Ea B] — [Ep7 Bp]

The Particle-In-Cell loop
p,d

E B

Gather fields at particle position
[Ea B] — [Ep7 Bp]

Push all particles

\V/p ms

dixXp = Up/Yp

Fr

The Particle-In-Cell loop
p,d

E B

Gather fields at particle position
[Ea B] — [Ep7 Bp]

Push all particles

\V/p ms

dixXp = Up/Yp

Fr

Project current densities on grid*

[XP7 pp] — [107 J]

* using a charge conserving scheme

The Particle-In-Cell loop
p,d

E B

Gather fields at particle position
[Ea B] — [Ep7 Bp]

Solve Maxwell’s Egs. Push all particles
8tE = -J+V x B dtup _ ds F,
Vp Mms

atB:—VXE

dexp = up/Yp

Project current densities on grid*

Xp, Pp| = [P, J]

* using a charge conserving scheme

The Particle-In-Cell loop
p,d

E B

Gather fields at particle position
[Ea B] — [Ep7 Bp]

Solve Maxwell’s Egs. _g Push all particles
(9tE = —-J+V x B At dtu _ ds F,
Vp Tomg
OB =-VxE < diXp = Up/Vp

Project current densities on grid*

Xp, Pp| = [P, J]

* using a charge conserving scheme

Outlines

* Numerical approach: how to build up your PIC code

» Parallelization: getting ready for the super-computers

- Additional modules: beyond the collisionless plasma

 Some physics highlights: what you can do with a PIC code

Outlines

* Numerical approach: how to build up your PIC code

» Parallelization: getting ready for the super-computers

- Additional modules: beyond the collisionless plasma

 Some physics highlights: what you can do with a PIC code

Step |
Field gathering: interpolation at particle position

Step |
Field gathering: interpolation at particle position

E. B

Step |
Field gathering: interpolation at particle position

Step |
Field gathering: interpolation at particle position

Step |
Field gathering: interpolation at particle position

Step |
Field gathering: interpolation at particle position

Step |
Field gathering: interpolation at particle position

Step |
Field gathering: interpolation at particle position

$O%) = Axs(x),
rl if |x|] < ! AX
sWx) = | -2
.O otherwise,
'(1 ‘XD if x| < Ax
$3(x) = 1 AX -
|0 otherwise,
_ (3 4 ;1 x \?2 1
(E,B), = [dx(E,B)(x)S(x — xp) S-S5 i< ax
4 3 \ Ax 2
By =149 2 1 x \° .1 3
— 1——’— if — Ax < |x| < = Ax,
8 3 | Ax 2 2
0 otherwise,
(2 3/7x\2 3| x 3.
— 1——(—) —|——‘—‘ if |x|] < Ax,
3 2 \ AX 41 Ax
$Wx) = {4 1 x 1\’ _
— 1——‘—‘ if Ax < |x| < 2 Ax,
3 2 | AX
0 otherwise.

Step |

Field gathering: interpolation at particle position

$O%) = Axs(x),

sV(x) =

4

, 1
1 if |x| < = Ax,
2

0 otherwise,

r X .
(1 — ‘—D if [x| < Ax,
AX

otherwise.

a(2) _
S(X) =
|0 otherwise,
(3 4 / x \?]| . 1
- 1——<—) if |x| < = Ax,
4 3 \ Ax 2
By =149 2 1 x * 1 3
— 1——)— if — Ax < |x| < = Ax,
8 3 1 Ax 2 2
0 otherwise,
(2 3/7x\2 3| x 3.
— 1——(—) +—‘—‘ if |x| < Ax,
3 2 \ AX 41 Ax
sWx) =144 11 x 1\ ,
- 1——)—‘ if Ax < [x| < 2 Ax,
3 2 X
10

Step 2
The Boris leap-frog pusher is a very popular method
to advance particles

Step 2
The Boris leap-frog pusher is a very popular method
to advance particles

nAt

Step 2
The Boris leap-frog pusher is a very popular method
to advance particles

Step 2
The Boris leap-frog pusher is a very popular method
to advance particles

nAt

| n
|371(9)

g™ M

Step 2
The Boris leap-frog pusher is a very popular method
to advance particles

Step 2
The Boris leap-frog pusher is a very popular method
to advance particles

Step 2
The Boris leap-frog pusher is a very popular method
to advance particles

7\

nAt

| nl n
| 371(9)|331(9+1)

g™ Bh)

o @ o o - o o

Step 2
The Boris leap-frog pusher is a very popular method
to advance particles

nAt
*-——o o O O o O
| 371(9“) | %(9“—'_1:)
pn) g
) | |
(nr5) o (nt3)
P p

o @ C. o - o o

Step 2
The Boris leap-frog pusher is a very popular method
to advance particles

nAt
O | O | @ O | O @ O O
| 37;(9“) | w}(?n-|-1:) |
g) | |
? I I I
(n73) D)
P p
® 9 9 ® ® ® ®

Step 2
The Boris leap-frog pusher is a very popular method
to advance particles

Step 2
The Boris leap-frog pusher is a very popular method
to advance particles

Step 2
The Boris leap-frog pusher is a very popular method
to advance particles

Step 2
The Boris leap-frog pusher is a very popular method
to advance particles

Step 2
The Boris leap-frog pusher is a very popular method
to advance particles

Step 3
Charge-conserving current deposition scheme are available
among which Esirkepov’s is ‘most’ popular

I N e I A v T
———0—— *——o & *—>

Esirkepov, Comp. Phys. Comm. 135, 144 (2001)

Step 3
Charge-conserving current deposition scheme are available
among which Esirkepov’s is ‘most’ popular

Esirkepov, Comp. Phys. Comm. 135, 144 (2001)

Step 3
Charge-conserving current deposition scheme are available
among which Esirkepov’s is ‘most’ popular

Esirkepov, Comp. Phys. Comm. 135, 144 (2001)

Step 3
Charge-conserving current deposition scheme are available
among which Esirkepov’s is ‘most’ popular

In I D, current deposition Is easily done directly from charge conservation:
8$Ja; — —(9,5,0

while other component are ‘directly’ projected onto the grid (see interpolation)

Esirkepov, Comp. Phys. Comm. 135, 144 (2001)

Step 3

Charge-conserving current deposition scheme are available
among which Esirkepov’s is ‘most’ popular

In I D, current deposition Is easily done directly from charge conservation:

8$Ja; — —(9,5,0

while other component are ‘directly’ projected onto the grid (see interpolation)

In 2D & 3D, Esirkepov's method allows to conserve charge (within machine presicion)
1 1 1
(n+3) (n+3) Az (n+3)
J 27 = (Jy 2"+ gsw W, 2
(,p)H%,j (,p)i_%,j Us Wp “A 3 ()i+%,j
1 1 1
(n+35) (n+35) Ay (n+35)
J 2 =(J 2+ qsw, — (W, 7
(y,p)i)jJr% (y,p)m_% s Wp "A 7 (y)jyiJr%

Esirkepov, Comp. Phys. Comm. 135, 144 (2001)

Step 4
The Finite-Difference Time-Domain (FDTD) method is
a popular method for solving Maxwell’s Equations

(i +1)Ax - - - IL’

Y
B
2 >
E,,J, /' B-
1™
‘ - —-(k+1)Az
E.. J,
E'I 9]l,
1IAx — - — =y - - -kAz
P |
| |
| |
jAy (J +1)Ay

A. Taflove, Computation electrodynamics: The finite-difference time-domain method, 3rd Ed. (2005)

Step 4
The Finite-Difference Time-Domain (FDTD) method is

a popular method for solving Maxwell’s Equations

nAt ¢
O 9 ——9 O O @ O o—

A. Taflove, Computation electrodynamics: The finite-difference time-domain method, 3rd Ed. (2005)

Step 4
The Finite-Difference Time-Domain (FDTD) method is
a popular method for solving Maxwell’s Equations

nAt J(n+3) ¢
O o —<—9 O O o O o —

(n)

0

A. Taflove, Computation electrodynamics: The finite-difference time-domain method, 3rd Ed. (2005)

Step 4
The Finite-Difference Time-Domain (FDTD) method is
a popular method for solving Maxwell’s Equations

nAt j(n+3) !
O —<—9 O o O O o

o)

E®)

A. Taflove, Computation electrodynamics: The finite-difference time-domain method, 3rd Ed. (2005)

Step 4
The Finite-Difference Time-Domain (FDTD) method is

a popular method for solving Maxwell’s Equations

nAt j(n+3) !
O —<—9 O o O O o

o)

E(™ ght+l)

N

Solving Ampere’s equation: O, E, = —J, — 0,8,

A. Taflove, Computation electrodynamics: The finite-difference time-domain method, 3rd Ed. (2005)

Step 4
The Finite-Difference Time-Domain (FDTD) method is

a popular method for solving Maxwell’s Equations

nAt j(n+3) !
@ o — <9 @ O o @ *—

() gnt3)

E®™ gt

Solving Ampere’s equation: O, E, = —J, — 0,8,

(B, — (B,)™ _ _J(n+%)
At 7

1

time-centering — (0,B,)"*3)

A. Taflove, Computation electrodynamics: The finite-difference time-domain method, 3rd Ed. (2005)

Step 4
The Finite-Difference Time-Domain (FDTD) method is

a popular method for solving Maxwell’s Equations

nAt j(n+3) !
@ *—<—9 @ O @ @ *—

() gnt3)

E®™ gt

N

Solving Ampere’s equation: O, E, = —J, — 0,8,

n+1 n 1
time-centering (Ey) "D — (B,)™ __gnt3) g (n+3)
(n+3) (n—35)
(n+1) (n) (B:) 1% —(B2) 1
space-centering (Ey); — (Ey); — (J)(+%) B P 1+
At J7 Ax

A. Taflove, Computation electrodynamics: The finite-difference time-domain method, 3rd Ed. (2005)

Step 4
The Finite-Difference Time-Domain (FDTD) method is

a popular method for solving Maxwell’s Equations

nAt J(n+3) ¢
@ <0 <9 o O @ o—
() Blnt3) glnty)

EM™ \ gt

Solving Ampere’s equation: O, E, = —J, — 0,8,

n+1 n 1
time-centering (Ey) "D — (B,)™ __gnt3) g (n+3)
(n+3) (n—
(n+1) (n) (B:) 1% —(B2) 1
space-centering (Ey); — (Ey); — (J)(+%) B P 1+
At Yy Ax

Solving Faraday’s equation: 0;B, = 0, F,

A. Taflove, Computation electrodynamics: The finite-difference time-domain method, 3rd Ed. (2005)

Step 4
The Finite-Difference Time-Domain (FDTD) method is

a popular method for solving Maxwell’s Equations
—

nAt J(n+3)
@ <0 <9 o
() Blnt3) glnty)

EM™ \ gt

Solving Ampere’s equation: 0: L,
n+1 n £
(Ey)() _ (Ey)() _ _J§n+2) B (aa:Bz)(n+§)

— —J, - 0,B,

time-centering
At il :
n § T —
(n+1) (n) (B2) 1% —(B:)
space-centering (Ey); — (Ey); — (J)@JF%) B P 1+
At J7 Ax

Solving Faraday’s equation: 0;B, = 0, F,

3 1
(n+35) (n+35)
(BZ)i+%2 o (BZ)Z_|_%2

space/time-centering
At Ax

A. Taflove, Computation electrodynamics: The finite-difference time-domain method, 3rd Ed. (2005)

Step 4
Numerical analysis of the FDTD solvers gives you access to
the numerical dispersion relation & CFL condition

Nuter et al., Eur. Phys. J. D (2014); All papers by B. Godfrey, from the 70’s up to now !!!

Step 4
Numerical analysis of the FDTD solvers gives you access to
the numerical dispersion relation & CFL condition

The numerical electromagnetic wave eguation in a vacuum
ONE =+VY x B

0B =—-V" xE

Nuter et al., Eur. Phys. J. D (2014); All papers by B. Godfrey, from the 70’s up to now !!!

Step 4
Numerical analysis of the FDTD solvers gives you access to
the numerical dispersion relation & CFL condition

The numerical electromagnetic wave eguation in a vacuum

1 1
N1 —1 (n+5) pn—35)
OE=+V¥xB Op I = At {F 2 = F 2}
WITN,

0, B=—-V" xE 0y F=Ap™? [F,+1—F. 1}
2 5 2—5

Nuter et al., Eur. Phys. J. D (2014); All papers by B. Godfrey, from the 70’s up to now !!!

Step 4
Numerical analysis of the FDTD solvers gives you access to
the numerical dispersion relation & CFL condition

The numerical electromagnetic wave eguation in a vacuum

1 1
N1 —1 (n+5) pn—35)
OE=+V¥xB Op I = At {F 2 = F 2}
WITN,

0, B=—-V" xE 0y F=Ap™? [F,+1—F. 1}
2 5 2—5

Using the standard technique to derive the wave equation leads to:

a,f}ZE+ZaNE—o

Nuter et al., Eur. Phys. J. D (2014); All papers by B. Godfrey, from the 70’s up to now !!!

Step 4
Numerical analysis of the FDTD solvers gives you access to
the numerical dispersion relation & CFL condition

The numerical electromagnetic wave eguation in a vacuum

1 1
N _ —1 (n+5) pn—35)
OE=+V¥xB O; F = At {F 2 = F 2}
WILN.

0, B=—-V" xE 0y F=Ap™? [F,+1—F. 1}
2 5 2—5

Using the standard technique to derive the wave equation leads to:

ONE + Z OV E =0
Looking for numerical solution In the form:

(Ey)ET;)—I—l = E,o exp{z [ikan: + (J + %)kyAy
i +kk, Az — nwAtl}

Nuter et al., Eur. Phys. J. D (2014); All papers by B. Godfrey, from the 70’s up to now !!!

Step 4
Numerical analysis of the FDTD solvers gives you access to
the numerical dispersion relation & CFL condition

Nuter et al., Eur. Phys. J. D (2014); All papers by B. Godfrey, from the 70’s up to now !!!

Step 4
Numerical analysis of the FDTD solvers gives you access to
the numerical dispersion relation & CFL condition

After some algebra, one finds the numerical dispersion relation:

sin? (wWAt/2) Z sin® (k,Ap/2)
At? B A2

L

Nuter et al., Eur. Phys. J. D (2014); All papers by B. Godfrey, from the 70’s up to now !!!

Step 4
Numerical analysis of the FDTD solvers gives you access to
the numerical dispersion relation & CFL condition

After some algebra, one finds the numerical dispersion relation:

sin? (wWAt/2) Z sin® (k,Ap/2)
At? B A2

7
There exists a stability condition: Courant-Friedrich-Lewy (CFL)

At <Y (Ap~2) "1
7

Nuter et al., Eur. Phys. J. D (2014); All papers by B. Godfrey, from the 70’s up to now !!!

Step 4
Numerical analysis of the FDTD solvers gives you access to
the numerical dispersion relation & CFL condition

After some algebra, one finds the numerical dispersion relation:

sin? (wWAt/2) Z sin® (k,Ap/2)
At? B A2

7
There exists a stability condition: Courant-Friedrich-Lewy (CFL)

_oy—1/2 2D
At < ; (Ap~?) A=Ay A< Ax/V?2

Nuter et al., Eur. Phys. J. D (2014); All papers by B. Godfrey, from the 70’s up to now !!!

Step 4
Numerical analysis of the FDTD solvers gives you access to
the numerical dispersion relation & CFL condition

After some algebra, one finds the numerical dispersion relation:

sin? (wWAt/2) Z sin® (k,Ap/2)
At? B A2

7
There exists a stability condition: Courant-Friedrich-Lewy (CFL)

A< S (ap) P 2 At < Az/V2
L

Axr = Ay

The FDTD solver is subject to numerical
dispersion as the numerical light wave
velocity I1s found to depend on its
wavenumber and orientation.

)
<

=
=2

k.Ax
Nuter et al., Eur. Phys. J. D (2014); All papers by B. Godfrey, from the 70’s up to now !!!

A quick summary
The PIC approach in a nutshell

Initialization time step n =0, time t = 0

1
Particle loading Vp, define (x,)™=°, (up)"~" 2
Charge projection on grid [Vp, (xp)n:o] - p(n=0) (x)

Compute initial fields - solve Poisson on grid: [p(”zo)(x) — B9 (x)

stat

- add external fields: E"=? (x) = E77? (x) + B (x)
1

stat ext

1 net
B("=2)(x) = B! 2’ (x)

ext

PIC loop: from time step n to n + 1, time t = (n + 1) At

Restart charge & current densities
Save magnetic fields value (used to center magnetic fields)

Interpolate fields at particle positions Vp, [x,, E™ (x), B (x)] — E§,"), Bj([,n)

1 1
Push particles - compute new velocity Vp, p,([,n_ 2) [EJ(D"), B,(on)] p,(, +2)

1
41
- compute new position Vp, x,(on) [pz([,n 2)] xén'*'l)

Project current onto the grid using a charge-conserving scheme

(n) _(n+1) (n+3) 1
Vp xp 7xP 7pP 2 _)J(n+2)(x)

Solve Maxwell’s equations

1
- solve Maxwell-Faraday: E™ (x) [J(’”'E)(x)] E("“)(x)
- 3
- solve Maxwell-Ampere: B(n+§)(x) [E("+1)(x)] B("+§)(x)

1 3
- center magnetic fields: BV (x) = z (B("+§)(x) - B("+§)(x))

There are still a few things to know before running
your first PIC simulation

There are still a few things to know before running
your first PIC simulation

» noise is inherent to PIC code
electromagnetic fluctuations inherent to a thermal plasma
the level of noise Is however much exaggerated in PIC codes

There are still a few things to know before running
your first PIC simulation

» noise is inherent to PIC code
electromagnetic fluctuations inherent to a thermal plasma
the level of noise Is however much exaggerated in PIC codes

- some numerical instabilities have to be taken care off carefully

- numerical heating usually requires Az < Ape
- numerical-Cherenkov can also plague simulation with relativistically

drifting particles

There are still a few things to know before running
your first PIC simulation

noise is inherent to PIC code
electromagnetic fluctuations inherent to a thermal plasma
the level of noise Is however much exaggerated in PIC codes

some numerical instabilities have to be taken care off carefully

- numerical heating usually requires Az < Ape

- numerical-Cherenkov can also plague simulation with relativistically
drifting particles

PIC codes are usually very robust, beware of your results!
A PIC code will most likely not crash, even if your simulation s
complete non-sense!

There are still a few things to know before running
your first PIC simulation

» noise is inherent to PIC code
electromagnetic fluctuations inherent to a thermal plasma
the level of noise Is however much exaggerated in PIC codes

- some numerical instabilities have to be taken care off carefully
- numerical heating usually requires Az < Ape
- numerical-Cherenkov can also plague simulation with relativistically
drifting particles

» PIC codes are usually very robust, beware of your results!
A PIC code will most likely not crash, even if your simulation is
complete non-sense!

* | did not discuss boundary conditions
nor ghost-cells

There are still a few things to know before running
your first PIC simulation

» noise is inherent to PIC code
electromagnetic fluctuations inherent to a thermal plasma
the level of noise Is however much exaggerated in PIC codes

- some numerical instabilities have to be taken care off carefully
- numerical heating usually requires Az < Ape
- numerical-Cherenkov can also plague simulation with relativistically
drifting particles

» PIC codes are usually very robust, beware of your results!
A PIC code will most likely not crash, even if your simulation is
complete non-sense!

* | did not discuss boundary conditions
nor ghost-cells

There are still a few things to know before running
your first PIC simulation

» noise is inherent to PIC code
electromagnetic fluctuations inherent to a thermal plasma
the level of noise Is however much exaggerated in PIC codes

- some numerical instabilities have to be taken care off carefully
- numerical heating usually requires Az < Ape
- numerical-Cherenkov can also plague simulation with relativistically
drifting particles

» PIC codes are usually very robust, beware of your results!
A PIC code will most likely not crash, even if your simulation is
complete non-sense!

* | did not discuss boundary conditions
nor ghost-cells

Outlines

* Numerical approach: how to build your PIC code

- High-performance computing:
getting ready for the super-computers

- Additional modules: beyond the collisionless plasma

* Some physics highlights: what you can do with a PIC code

Parallelization is mandatory for large-scale PIC simulation

Parallelization is mandatory for large-scale PIC simulation

Large scale PIC simulation of
magnetic reconnection at the earth magnetopause

Simulation box: 1280 & x 256

25600 x 10240 PIC cells
runupto t =800 "
N; ~ 9.5 x 10° timesteps
for a total of 22 x 10 quasi-particles.

Y Wi/ C

550 600 650 700

Y Wi/ C

Parallelization is mandatory for large-scale PIC simulation

160 EEEE—

140§

120

100
160

140

120 === -

10

140

120

100

550

700

Large scale PIC simulation of
magnetic reconnection at the earth magnetopause

Simulation box: 1280 —= x 256 =

25600 x 10240 PIC cells
runupto t =800 "
N; ~ 9.5 x 10° timesteps
for a total of 22 x 10 quasi-particles.

Required simulation time:
|4 000 000 hours ~ 1600 years!!!

Y Wi/ C

Parallelization is mandatory for large-scale PIC simulation

Large scale PIC simulation of
magnetic reconnection at the earth magnetopause

160 EEEE—
140§
120

100
160

140

120 === -

10

140

120

100

550 600 650 700

Simulation box: 1280 —= x 256 =

25600 x 10240 PIC cells
runupto t =800 "
N; ~ 9.5 x 10° timesteps
for a total of 22 x 10 quasi-particles.

Required simulation time:
|4 000 000 hours ~ 1600 years!!!

Solution:
share the work on 16384 CPUs !!!

High-performance computing new paradigms & challenges

High-performance computing new paradigms & challenges

Tianhe-2 34 PF:
17 MW

High-performance computing new paradigms & challenges

Tianhe-2 34 PF: Exascale 1000 PF:
17 MW T 500 MW

High-performance computing new paradigms & challenges

Tianhe-2 34 PF: Exascale 1000 PF:
17 MW T 500 MW

| 1 E
.+ _ .. . Frequency (MHz) ;i

Power (Watts) }

Number of
logical cores _

-1 | | |] 1 |
184970 1980 1990 2000 5010 5020 2030
Year

High-performance computing new paradigms & challenges

Tianhe-2 34 PF: Exascale 1000 PF:
17 MW _' 500 MW
10% — i
g . e Frequency (MHz) massive

Number of

Power (Watts) -

logical cores _

-1 | | l] | |
184970 1980 1990 2000 5010 5020 2030
Year

hybrid MPI-OpenMP
dynamic (load balance)

Memory

shared vs. distributed
cache use

Vectorization™”
SIMD

Parallel 1/0
hdf5, openPMD

High-performance computing new paradigms & challenges

Tianhe-2 34 PF: Exascale 1000 PF:
17 MW T 500 MW

Number of

| 1 E
.+ _ .. . Frequency (MHz) ;i

Power (Watts) -

logical cores _

-1 | | |] 1 |
184970 1980 1990 2000 5010 5020 2030
Year

*Derouillat et al., Comp. Phys. Comm. 222, 351 (2018)
**Beck et al., arXiv:1810.03949

massive
hybrid MPI-OpenMP
dynamic (load balance)

Memory

shared vs. distributed
cache use

Vectorization™”
SIMD

Parallel 1/0
hdf5, openPMD

Step 1: Parallelization
PIC codes are well adapted to massive parallelism

Step 1: Parallelization
PIC codes are well adapted to massive parallelism

My Simulation (LWFA)

0 20 40 60 80 100

Step 1: Parallelization
PIC codes are well adapted to massive parallelism

My Super-Computer
My Simulation (LWFA)

- CE

140 computing element

120

100

Step 1: Parallelization
PIC codes are well adapted to massive parallelism

My Super-Computer

My Simulation (LWFA)
- CE

computing element

0 20 40 60 80 100

X [pm]

Domain Decomposition

Step 1: Parallelization
PIC codes are well adapted to massive parallelism

My Super-Computer

My Simulation (LVWFA)

- CE

computing element

0 20 40 60 80 100

X [pm]

Domain Decomposition

Step 1: Parallelization
PIC codes are well adapted to massive parallelism

My Super-Computer

My Simulation (LVWFA)

L —
- CE

140 computing element

120

100

0 20 40 60 80 100
X [pm]

Domain Decomposition

Step 1: Parallelization
PIC codes are well adapted to massive parallelism

My Super-Computer
My Simulation (LVWFA)

L

- CE

computing element

40 60

X [pm]

80 100

Domain Decomposition

Step 1: Parallelization
PIC codes are well adapted to massive parallelism

My Super-Computer

My Simulation (LWFA)
- CE

computing element

0 20 40 60 80 100

X [pm]

Domain Decomposition

Step 1: Parallelization
PIC codes are well adapted to massive parallelism

My Super-Computer

My Simulation (LWFA)
- CE

computing element

<= MPI

Message
Passing
Interface

0 20 40 60 80 100
X [pm]

Domain Decomposition

Step 1: Parallelization
PIC codes are well adapted to massive parallelism

My Super-Computer

My Simulation (LWFA)
- CE

computing element

<= MPI

Message
Passing
Interface

0 20 40 60 80 100
X [pm]

Domain Decomposition

Step 1: Parallelization
PIC codes are well adapted to massive parallelism

My Super-Computer

My Simulation (LWFA)
- CE

computing element

<= MPI

Message
Passing
Interface

0 20 40 60 80 100
X [pm]

== Domain Decomposition

Shared memory

Step 1: Parallelization
PIC codes are well adapted to massive parallelism

My Super-Computer

My Simulation (LWFA)
- CE

computing element

<= MPI

Message
Passing
Interface

0 20 40 60 80 100

-------- Patch Decomposition Shared memory

Step 1: Parallelization
PIC codes are well adapted to massive parallelism

My Super-Computer

My Simulation (LVFA)
- CE

140 computing element

120 b

<= MPI

Message
Passing
Interface

100

40 60 80 100
x [um

== Domain Decomposition

-------- Patch Decomposition Shared memory

Step 1: Parallelization
PIC codes are well adapted to massive parallelism

My Super-Computer
My Simulation (LVFA)

- CE

140 computing element

120 b

<= MPI

Message
Passing
Interface

100

80

y [um]

60 [

40 0

<= OpenMP

shared mem. only

20

40 60 80 100
x [um

== Domain Decomposition

-------- Patch Decomposition Shared memory

Step 1: Parallelization
PIC codes are well adapted to massive parallelism

My Super-Computer
My Simulation (LVFA)

- CE

140 computing element

120 b

<= MPI

Message
Passing
Interface

100

80

y [um]

60 [

40 0

<= OpenMP

shared mem. only

20

40 60 80 100
x [um

== Domain Decomposition

-------- Patch Decomposition Shared memory

Step 1: Parallelization
PIC codes are well adapted to massive parallelism

My Super-Computer
My Simulation (LVFA)

- CE

140 computing element

120 b

<= MPI

Message
Passing
Interface

100

80

y [um]

60 [

40 0

<= OpenMP

shared mem. only

20

40 60 80 100
x [um

== Domain Decomposition

-------- Patch Decomposition Shared memory

Step 1: Parallelization
PIC codes are well adapted to massive parallelism

My Super-Computer
My Simulation (LVFA)

- CE

140 computing element

120

<= MPI

Message
Passing
Interface

100

80

y [um]

60 [

40 0

<= OpenMP

shared mem. only

20

40 60 80 100
x [um

== Domain Decomposition

-------- Patch Decomposition Shared memory

Step 1: Parallelization
PIC codes are well adapted to massive parallelism

My Super-Computer
My Simulation (LVFA)

- CE

140 computing element

120

<= MPI

Message
Passing
Interface

100

80

y [um]

60 [

40 0

<= OpenMP

shared mem. only

20

40 60 80 100
x [um

== Domain Decomposition

-------- Patch Decomposition Shared memory

Step 1: Parallelization
PIC codes are well adapted to massive parallelism

My Super-Computer
My Simulation (LVFA)

- CE

140 computing element

120

<= MPI

Message
Passing
Interface

100

80

y [um]

60 [

40 0

<= OpenMP

shared mem. only
Dynamic scheduler

20

40 60 80 100
x [um

== Domain Decomposition

-------- Patch Decomposition Shared memory

Step 1: Parallelization
PIC codes are well adapted to massive parallelism

My Super-Computer
My Simulation (LVFA)

- CE

140 computing element

120 b

<= MPI

Message
Passing
Interface

100

80

y [um]

60 [

40

<= OpenMP

shared mem. only
Dynamic scheduler

20

40 60
x [um

Domain Decomposition

-------- Patch Decomposition Shared memory

Step 1: Parallelization
PIC codes are well adapted to massive parallelism

My Super-Computer
My Simulation (LVFA)

- CE

140 computing element

120 b

<= MPI

Message
Passing
Interface

100

80

y [um]

60 [

40

<= OpenMP

shared mem. only
Dynamic scheduler

20

40 60
x [um

Domain Decomposition

-------- Patch Decomposition Shared memory

Step 1: Parallelization
PIC codes are well adapted to massive parallelism

My Super-Computer
My Simulation (LVFA)

- CE

140 computing element

120 b

<= MPI

Message
Passing
Interface

100

80

y [um]

60 [

40

<= OpenMP

shared mem. only
Dynamic scheduler

20

40 60
x [um

Domain Decomposition

-------- Patch Decomposition Shared memory

Step 1: Parallelization
Hybrid parallelization significantly improves performance

600
q) | p— |
= P s00
o
- C 400
S O

)
O @ 300
L0
o — 200
c S
= < 100 P oo oo i

B o~
% 2000 4000 6000 8000 10000 12000

iteration number

Step 1: Parallelization
Hybrid parallelization significantly improves performance

600

2 9 500
> »
- C 400
S 2
g g 300 time of bubble
5 = 200 formation \

O
£9 L
+— T /{v~v~‘-'~—-v~

% - 2000 4000 6000 8000 10000 12000

iteration number

Step 1: Parallelization
Hybrid parallelization significantly improves performance

600

768 MPIl x 1 OMP

iteration number

9 z 500
o o
- C 400
5 S |
g g 300 time of bubble
5 = 200 formation \

O
ISEST S

% - 2000 4000 6000 8000 10000

12000

Step 1: Parallelization
Hybrid parallelization significantly improves performance

600

22 s 768 MPI x 1 OMP

O 0

- % 400

3 - MP MP

o & 2@ time of bubble 1384 MPIx2 0

o = 200 formation \ 1256 MPIl x 3 OMP

8 128 MPI x 6 OMP

SR - 64 MPI x 12 OMP
% * 2000 4000 6000 8000 10000 12000

iteration number

Step 1: Parallelization
Hybrid parallelization significantly improves performance

600

o —

S 2 speed-uﬁs\“ 768 MPI x 1 OMP
= % 400 Bl

S = . D D
g g 300 time of bubble 1384 MPI x 2 OM
o = 200 formation \ {256 MPIl x 3 OMP
c 3 128 MPI x 6 OMP
N T 64 MPI x 12 OMP

% * 2000 4000 6000 8000 10000 12000
iteration number

Step 1: Parallelization
Dynamic load balancing further improve performances

Step 1: Parallelization
Dynamic load balancing further improve performances

1

4 5

128

dinate

64

Patches Y coor

0

0 256 512 768 1024
Patches X coordinate

Step 1: Parallelization
Dynamic load balancing further improve performances

1

4 5

128

dinate

64

Patches Y coor

0

0 256 512 768 1024
Patches X coordinate

Step 1: Parallelization
Dynamic load balancing further improve performances

1

4

wu

=
N
o

(@)}
H

Patches Y coordinate

o
o

256 512 768 1024

[
o))

[
N
=)

=
N
S

[
-
e

- ' 64 MPIl x 12 OMP

60! X % same with DLB
...- 128X6 + DLB
40 — 64X12 + DLB

Time for 100 iterations [s]
(0]
o

N
Q

P

2000 4000 6000 8000 10000 12000 14000
Number of iterations

Step 1: Parallelization
Dynamic load balancing further improve performances

1

4 5

=
N
o

(@)}
H

Patches Y coordinate

o
o

256 512 768 1024

[
®)]

[
N
=)

=
N
S

[
o
Q

! 64 MPI x 12 OMP
speed-up x1.6 ~

Time for 100 iterations [s]
(0]
o

60! . same with DLB
---= 128X6 + DLB
40 — 64X12 + DLB
20"
% 2000 4000 6000 8000 10000 12000 14000

Number of iterations

Step 1: Parallelization
Hybrid + Dynamic Load Balancing

time to compute
100 iterations [s]

60

7N\

—— 768 MPI x 1 OMP

—384 MPI x 2 OMP
~——256 MPI x 3 OMP

128 MPI x 6 OMP
64 MPI x 12 OMP

iteration number

> speed-up x5
400 Yy
300 time of bubble
200 formation \
100 /{',_:;, v_::v,;v"
OD 2000 4000 6000 8000 10000

12000

16

S
N B
o O

=
o
(@]

(@)
o

Time for 100 iterations [s]
N o)
o o

N
Q

speed-up x1.6

128 MPI x 6 OMP

64 MPI x 12 OMP

VA 0a4 same with DLB

- 128X6 + DLB
— 64X12 + DLB

2000

4000

6000 8000 10000 12000
Number of iterations

14000

Step 1: Parallelization
Hybrid + Dynamic Load Balancing

60
ORI N
5 -2 500 speed-up x5[768 MPIx 1 OMP
c S 400 ali
O = _
8 g 300 time of bubble
o = 20 formation \
£3 .

0 2000 4000
iteration

6000

1128 MPI x 6 OMP

{ 64 MPI x 12 OMP

Q
o speed-up x1.6 |
S .
A VN mas same with DLB
- --== 128X6 + DLB
ig 40 — 64X12 + DLB
20
% 2000 4000 6000 8000 10000 12000 14000

Number of iterations

Step 2: Vectorization
Vectorization in a nutshell

Introducing SIMD: Single
Instruction, Multiple Data

e Scalar processing e SIMD processing

traditional mode with SSE / SSE2

one operation produces one operation produces

one result multiple results

Step 2: Vectorization
Vectorization in a nutshell

Introducing SIMD: Single
Instruction, Multiple Data

e Scalar processing ¢ SIMD processing
traditional mode with SSE / SSE2
one operation produces one operation produces

one result multiple results

“x3 et 0

Beck ef al., arXiv:1810.03949

Step 2: Vectorization
Vectorization in a nutshell

Introducing SIMD: Single
Instruction, Multiple Data

e Scalar processing ¢ SIMD processing
traditional mode with SSE / SSE2
one operation produces one operation produces

one result multiple results

Smart (particles) operators:
- Interpolator, pusher, projector

Beck er al., arXiv:1810.03949

Step 2: Vectorization
Vectorization in a nutshell

Introducing SIMD: Single
Instruction, Multiple Data

e Scalar processing ¢ SIMD processing
traditional mode with SSE / SSE2
one operation produces one operation produces

one result multiple results

Smart (particles) operators:
- Interpolator, pusher, projector

Smart (particles) data structures:
- beware random mem. access

- contiguous memory

- sort at all times!

Beck er al., arXiv:1810.03949

Step 2: Vectorization
SMILEI uses an adaptive vectorization approach

—e— Vecto AVX512 —e— \ecto AVX2 e Scalar

—
o
1

.7
-3 s
L) I T

—
(@)
|

o
|

Computation time per particle per iteration (ns)

o ———o— o—o ® - oe—©
10" ——————
d) Haswell
™ : 1 Tl T
109 10! 10° 10°

Particles per cell

Step 2: Vectorization
SMILEI uses an adaptive vectorization approach

—e— Vecto AVX512 —e— \ecto AVX2 e Scalar

—
o
1

.+ 4X2.6
voon b

—
(@)
|

o
|

Computation time per particle per iteration (ns)

o —-0— *—o ® -0— o—9
10" —————
d) Haswell
™ ' I T T
109 10! 10° 10°

Particles per cell

Step 2: Vectorization
Laser-driven hole-boring

40 50 g 70 80 90 100 o0

20 30

10

0

60

Y (c/w) °
40

30

Laser pulse
- Intensity a, = 100 (10% W/cm?) 20
- FWHM 30x2mt w™' (15 fs)
- Waist 2A

@ 32 PPC : speed-up x 1.5

Thin foil

- Carbon (n, ~ 492 n,)
- Thickness 2A

- Preplasma 2A

Step 2: Vectorization
Laser-driven hole-boring

X(/omega)
c/og\egga M ki
PR

X (c/omeg i[9)
70 80 90 c/omega)
o 10 20 3 4 50 83 " Gbe/omes 4.0+01 o w0 0%
30 o 10
- —20
60 —10 60 60 Electron density
) Ky 8.0e+02
50 —-10 50 S0 700
40 I o
- t -30 40 “ — 500
Y (c/omegc:)30 -4.0e+01 ¥ (c/omega) 3gY (c/omega) — 400
3 OV (c/omega) 30 — 300
. 1.0e+03 20 — 200
20 [800 2 e
10 | g 10 —2.1e01
60 8 10
" 10 3 ko)
C
—400 2 0 s 70
20 R)O — 200 § Z (c/omega) 20 59((c/omega)
Z (c/omega) 40 . 0 70 | 2 oan 8 10
% (c/omega) '
0
X (c/omegg& 70 80 90 ch/o"?\ggc)

40

50

Electron computational state

1.1e+00 —
& Vectorized
40 0.8
0.6
Y (c/omega),, | 30 (c/omega)
I’ 04—
20
02—

0.0e+00 — -Scalar

Step 2: Vectorization
Laser-driven hole-boring

X(/omega)
c/og\egga M ki
PR

X (c/omeg i[9)
70 80 90 c/omega)
o 10 20 3 4 50 83 " Gbe/omes 4.0+01 o w0 0%
30 o 10
- —20
60 —10 60 60 Electron density
) Ky 8.0e+02
50 —-10 50 S0 700
40 I o
- t -30 40 “ — 500
Y (c/omegc:)30 -4.0e+01 ¥ (c/omega) 3gY (c/omega) — 400
3 OV (c/omega) 30 — 300
. 1.0e+03 20 — 200
20 [800 2 e
10 | g 10 —2.1e01
60 8 10
" 10 3 ko)
C
—400 2 0 s 70
20 R)O — 200 § Z (c/omega) 20 59((c/omega)
Z (c/omega) 40 . 0 70 | 2 oan 8 10
% (c/omega) '
0
X (c/omegg& 70 80 90 ch/o"?\ggc)

40

50

Electron computational state

1.1e+00 —
& Vectorized
40 0.8
0.6
Y (c/omega),, | 30 (c/omega)
I’ 04—
20
02—

0.0e+00 — -Scalar

Step 2: Vectorization
Welbel-mediated collisionless shocks

Normalized electron
density (ne/nc)

PO
. 1.000e+01
0 9

8

7

100
Q0

Front of the
right flow
Isotropization

region Density 100

filaments Front of the 0 g
left flow

@ 32 PPC : speed-up x 1.5

Step 2: Vectorization
Welbel-mediated collisionless shocks

z (c/w)
20 219 >0

25
20

y (c/w) 15
10

Normalized electron

90 density (n/n,)

1.000e+01
9
8
74
—6
—5

90 g Computational state of
210 electron patches

10 10 B vectorized
Scalar

Z
(c/w) 20

200

Normalized
B, field

2.500e+00
[2
B 15

1
—05
-0
~-0.5

-1

-1.5
-2
-2.500e+00

Step 2: Vectorization
Welbel-mediated collisionless shocks

z (c/w)
20 219 >0

25
20

y (c/w) 15
10

Normalized electron

90 density (n/n,)

1.000e+01
9
8
74
—6
—5

90 g Computational state of
210 electron patches

10 10 B vectorized
Scalar

Z
(c/w) 20

200

Normalized
B, field

2.500e+00
[2
B 15

1
—05
-0
~-0.5

-1

-1.5
-2
-2.500e+00

Outlines

* Numerical approach: how to build your PIC code

» Parallelization: getting ready for the super-computers

- Additional modules: beyond the collisionless plasma

 Some physics highlights: what you can do with a PIC code

Collisions can be introduced using an ad-hoc Monte-Carlo module

Collisions can be introduced using an ad-hoc Monte-Carlo module

Collisions are computed inside the cell

Collisions can be introduced using an ad-hoc Monte-Carlo module

Collisions are computed inside the cell

To avoid the N-body problem, quasi-particles in the cell are randomly “paired”

species |

species 2

Collisions can be introduced using an ad-hoc Monte-Carlo module

Collisions are computed inside the cell

To avoid the N-body problem, quasi-particles in the cell are randomly “paired”

species | ~_4 . B
N\
W K 7 M N

species 2

Collisions can be introduced using an ad-hoc Monte-Carlo module

Collisions are computed inside the cell

To avoid the N-body problem, quasi-particles in the cell are randomly “paired”

species | ~_4 . B
N\
W K 7 M N

species 2

A single particle goes through many (N > 1) collisions at small angle 6
which translates in a total deflection angle X (not necessarily small)

L
.......
. oy, 0
SEEEEEEEEEEEEEEEEnEm®s &Y pEEsEEEEEEEEEEEEEEEE]

Collisions can be introduced using an ad-hoc Monte-Carlo module

Collisions are computed inside the cell

To avoid the N-body problem, quasi-particles in the cell are randomly “paired”
species | ~_4 . B
N\
species 2 -) N

A single particle goes through many (N > 1) collisions at small angle 6
which translates in a total deflection angle X (not necessarily small)

Y for each pair (Monte-Carlo)
\ - compute the collision rate

- compute the deflection angle
2 - deflect one or both particles

.
e
.
.
.
ws*
.
s
e
.
o*
.
.
.
"""""""
*

Nanbu, Phys. Rev. E 55, 4642 (1997); J. Comp. Phys. 145, 639 (1998)
F. Pérez et al., Phys. Plasmas 19, 083104 (2012)

PIC codes are then able to treat purely collisional processes

Thermalization Isotropization
(hydrogen plasma) (electron plasma
100 T ! T T T ! ! |
— Simulation 140 — Simulation [H
90F e o Theory g
> =120
= 80F B
— =
*§ *é 100
(] &
g electrons g
= ~ 80
60 . .
1018
60
50O 5 1IO 1I5 20 0

Time [ps] Time |[fs]

J. Derouillat et al., SMILEI: a collaborative, open-source, multi-purpose PIC code for plasma simulation,
to be submitted (available upon request)

Similarly field and collisional ionization can be treated using
a Monte-Carlo approach

Field ionization of Carbon by Stopping power of a cold aluminium
a 5x10'6W/ecm2 20 fs laser pulse plasma of density 102! cm-3
100 ‘ "I .-.=T| .‘ T T | | ' | ! |
NI
l' ! ::"l - N;—c :_ — _:
/_\075* ::= := A, 8 :. Theory
o R - 723 : |
= i fi - Zr=4 2 [
= 0.50|- 181 i §
S 1k o
N ': i K o
= {111 g
0208 1HEI! : >
:.'l Bl 8
HE 2
' B 18
A5 Ea 100 b
000 y 8 2 16 07 107 107 107 10° 10° 10

Incident electron energy [keV]|

@)

~~
\

P
o

R. Nuter ef al., Phys. Plasmas 18, 033107 (2011); F. Pérez et al., Phys. Plasmas 19, 083104 (2012)

J. Derouillat et al., SMILEI: a collaborative, open-source, multi-purpose PIC code for plasma simulation,
to be submitted (available upon request)

Adding Quantum Electrodynamics (QED) effect is also
very interesting for forthcoming multi-petawatt facilities

Adding Quantum Electrodynamics (QED) effect is also
very interesting for forthcoming multi-petawatt facilities

Nonlinear Thomson and
Compton scattering

e +nyL—e +

Bremsstrahlung

e

N\

.zt
~ 0
N
@

Z e ‘1

Adding Quantum Electrodynamics (QED) effect is also
very interesting for forthcoming multi-petawatt facilities

Nonlinear Thomson and Multi-Photon
Compton scattering Breit-Wheeler Process

e” +nyL — e +n A nan — e et
Bremsstrahlung Pair production in strong
Coulomb field
_ ® e @
6.\\ . O '\\
\\\ 4
O -

High-Energy Photon Production

®
% @ “Th

uoI}anpo.id Jied uoJ}isod-uot}o9|3

Outlines

* Numerical approach: how to build your PIC code

» Parallelization: getting ready for the super-computers

- Additional modules: beyond the collisionless plasma

 Some physics highlights: what you can do with a PIC code

PIC codes are an excellent tool to support theoretical modelling
Even |D simulation can bring a deep insight into the physics at play

PIC codes are an excellent tool to support theoretical modelling
Even |D simulation can bring a deep insight into the physics at play

Relativistically-Induced Transparency

a(2)|___ i (“:% vx)
\ <

L)\l

vf

PIC codes are an excellent tool to support theoretical modelling
Even |D simulation can bring a deep insight into the physics at play

Relativistically-Induced Transparency

Pz

Pz

E. Siminos ef al., Phys. Rev. E 86, 056404 (2012)

PIC codes are an excellent tool to support theoretical modelling
Even |D simulation can bring a deep insight into the physics at play

Relativistically-Induced Transparency

la(z)|__ mi ix% ne(x)
A
0 s
vf
A P

t=22TL

i ——
= 0.1 1 10100

Pz

Pz

E. Siminos ef al., Phys. Rev. E 86, 056404 (2012)

Weibel instability in the presence
of an external magnetic field

o0 T e 1
D Tl e e o »
e = wow :
. ST, S~
o Dl K LN ~
™~ 9r e L . —
& 201 e 22 s i 1 19073
&3 = ol AR I R RTLLL Y e =
o Oy " i i p -
. vop PRI 020 gt 4 / ~——
S o T o e
AN LTINS
O oA] Lot | _15
)
50 1.25
<
& 20
8
0 — —1.25
0 40 80 120
b) twp

A. Grassi et al., Phys. Rev. E (in press)

PIC codes can help design & interpret experimental campaigns
2D and 3D simulations on super-computers will be necessary here

PIC codes can help design & interpret experimental campaigns
2D and 3D simulations on super-computers will be necessary here

High-harmonic generation
& electron acceleration from
laser-solid interaction

0 xTr /)\() 100
0 ,
ts (b)
4 \\\
"’é',i \\\\\\
2 _
~
>
Incident laser pulse t Reflected laser pulse
¥

G. Bouchard, F. Quérée, CEA/IRAMIS

PIC codes can help design & interpret experimental campaigns
2D and 3D simulations on super-computers will be necessary here

High-harmonic generation
& electron acceleration from
laser-solid interaction

0 xZr /)\()].00
0
ts (b)
/'//;’ \\\\\\
< _ \
~.
>
Incident laser pulse t Reflected laser pulse

o0

U/AU

B]
SIS W
SRS

00
—45° 45°
Incident laser pulse L "
ident laser pulse
! ,/l/// Reflected laser pulse
20 P 0
‘/_‘V 4/
X/ 7 4 -
S =\ I B
=
~=F = [MeV]
Plasma target 0

G. Bouchard, F. Quérée, CEA/IRAMIS

PIC codes can help design & interpret experimental campaigns
2D and 3D simulations on super-computers will be necessary here

High-harmonic generation
& electron acceleration from
laser-solid interaction

0 2/ o 100
! by |®

\

N
2
~
EN

t1 Reflected laser pulse

45°
Incident laser pulse =tk /4
) ~ ,/ll// Reflected laser pulse
, ' %/
Z 4/ 10

o \
114 - Ez

Plasma target

G. Bouchard, F. Quérée, CEA/IRAMIS

Laser wakefield acceleration
of electrons

0 n/no 10 0 B,(10*T) 7

PIC codes can help design & interpret experimental campaigns
2D and 3D simulations on super-computers will be necessary here

High-harmonic generation Laser wakefield acceleration
& electron acceleration from of electrons
laser-solid interaction 0 nwme 10 0 B,(10°T) 7
0 /X0 100 _ B
0 7 (b) 15
\\\ . & Pl { ol
2 \\\\\\ O“((~(\‘\L'\\€’“u
E g
Incident laser pulse t1 Reflected laser pulse '1 5 - Vel 2 s

Plasma target 0

G. Bouchard, F. Quérée, CEA/IRAMIS A. Savert et al., Phys. Rev. Lett. 115, 055002 (2015)

PIC codes are very versatile: they can be applied to a wide range
of physical scenarii, from laser-plasma interaction to astrophysics

B [
| | _50F AT 7 m’
\ o N Laser ™ Electrons Q = . \:;IL‘ \ | '
5‘ 2507[200 _ k ‘ s | 057" ~ L \. £y
.1 u i | i S y > O P /..wa\ o U
i | 100 B . i " 3& 7 -;—'%'**mf
;"'{\\\ I | ~-100 ""*k\\ > \ [O'O] a) 50 =|- o W\ j.’hq dlof B | _5
§ f,\'-\._‘ ~ | ’ ¢ "\\«._ — l} =
e 2B T s ooor - e 4
\\\\\ ~- 3
. 2
; | 1
‘] Photons o ;’] Positrons
f 251.710 : ‘ ‘\ .* i | 0

0.1

Ko A - "
| ' 2 1 » “ lom
-0. ;\‘\\ ['

> " 0001 w7 s oo0r

Y

1’33

{

R

{
<ne‘>y
O = M W
{ {
7

| | | |
. ¢) 0 250 500 750 1000

wyx/c

PIC codes are very versatile: they can be applied to a wide range
of physical scenarii, from laser-plasma interaction to astrophysics

Pair production on
multi-petawatt laser facilities

o er
| 250.

} l
‘ " 200 z i \
.‘ f E = \ 3;' 4

| “ 100 R j iy

PN ‘ PN
AN =100 AN
5N s N

~ C 200
"o 50

| 05
| l

Electrons

-0.1

[0.01

~"% 0,001

IOO]

“"s 0001

M. Lobet et al., arXiv:1510.02301v2 (2015)

Relativistic shocks
in electron-positron plasmas

—50 e AT N 0
Q — - '\:\:“J‘t*f Vi
e at L 9
g“ ! - ""\;’jf Al !
2) 501 ~ ANl -
4
3
2
1
0

| | |
3L -
2 _
1+ i
0 | | | |
0 250 500 750 1000
wyx/c

Plotnikov, Grassi & Grech, MNRAS

Conclusions

Conclusions

» PIC codes are very popular, versatile & efficient tools
for plasma simulation

Conclusions

» PIC codes are very popular, versatile & efficient tools
for plasma simulation

- A can be addressed
using PIC codes

Conclusions

PIC codes are very popular, versatile & efficient tools
for plasma simulation

A can be addressed
using PIC codes

can be implemented in PIC codes,
but the physics cannot be scaled anymore (w, needs to be defined!)

Conclusions

PIC codes are very popular, versatile & efficient tools
for plasma simulation

A can be addressed
using PIC codes

can be implemented in PIC codes,
but the physics cannot be scaled anymore (w, needs to be defined!)

The PIC method is conceptually simple & can be efficiently
implemented in a (massively) parallel framework

Conclusions

» PIC codes are very popular, versatile & efficient tools
for plasma simulation

- A can be addressed
using PIC codes

. can be implemented in PIC codes,
but the physics cannot be scaled anymore (w, needs to be defined!)

+ The PIC method is conceptually simple & can be efficiently
implemented in a (massively) parallel framework

 Implementation on new & future architectures requires
a strong input (co-development) from HPC specialists

Checkout SMILEI '

Code, Diagnostics/visualization tools and tutorials
available online!

l Smilei) Overview Understand Use

Smiilei is a Particle-In-Cell code for plasma simulation. Open-source, collaborative, user-friendly and

designed for high performances on super-computers, it is applied to a wide range of physics studies:
from relativistic laser-plasma interaction to astrophysics.

¥y) & B i)

Download GitHub Partners Publications Tutorials

http://www.maisondelasimulation.fr/smile1

http://www.maisondelasimulation.fr/smilei

Checkout SMILEI '

Code, Diagnostics/visualization tools and tutorials
available online!

http://www.maisondelasimulation.fr/smile1

http://www.maisondelasimulation.fr/smilei

