Observations of Earth

planetary magnetospheres

Philippe Zarka LESIA, Observatoire de Paris - CNRS - PSL philippe.zarka@obspm.fr • Magnetospheres : "object-worlds"

Context of ~all studies :

High plasma conductivity

Maxwell equations + Ohm law $\Rightarrow \partial B/\partial t = \eta \nabla^2 B - B(\nabla V) \approx - B(\nabla V)$

 \Rightarrow B frozen-in

- $\Rightarrow E = -V \times B$ almost everywhere (0 in plasma frame)
- \Rightarrow quasi-neutrality
- & E.B=0 ($\Delta \phi$ conserved along B lines, = electric equipotentials)

- Kivelson, M. G. & C. T. Russell, eds., Introduction to Space Physics, Cambridge University Press, 1995.
- Encrenaz, T., J. -P. Bibring, M. Blanc, A. Barucci, F. Roques & P. Zarka, Le système solaire (3^{ème} édition), Savoirs Actuels, EDP-Sciences / CNRS-Éditions, Paris, 2003.

- Solar Wind
- Planetary magnetic fields
- Origin & size of the magnetospheres
- Magnetospheric dynamics
- Currents, M-I & M-S coupling
- Aurora and radio emissions
- Radiation belts
- Radio Observations & simulations
- Application to Exoplanets
- Perspectives

Solar wind

Solar Wind

- dominated by bulk energy density : NmV²/2
- carries away solar B rooted in the Sun \Rightarrow ballerina skirt

- SW parameters at planetary orbits (r in AU) :

V ~400/r^{2/7} km/s T ~2x10⁵/r^{2/7} K

 $N = 5/r^2 \text{ cm}^{-3}$

 $B_r = 3/r^2 nT$ $B_{\phi} = B_r \Omega r/V = 3/r nT$

 $V_{\rm S} \sim 60/r^{1/7} \text{ km/s}$ $V_{\rm A} \sim 40x(1/2+r^{-2}/2)^{1/2} \text{ km/s}$

- Solar Wind Obstacle interaction
- depends on nature of obstacle :

- A: SW absorber (Moon) \Rightarrow wake
- B: SW atmosphere/ionosphere, no B (Venus, Comets, Titan/SW) ⇒ induced MS
- C: SW conducting body, no atmosphere: $V_{VS} \times B_{VS} \Rightarrow E \Rightarrow B$ (no example in the SW)
- D: SW intrinsic large-scale B, strong enough for P_B balances $P_{DYN} \Rightarrow MS$
- (B,C,D) : bow shock ; A : no shock

D: \Rightarrow abrupt boundary in planetary B = magnetopause

Planetary magnetic fields

Origin

- Dynamo : Rotation + Convection (*thermal, compositional*) + Conducting fluid (*Earth : liquid Fe-Ni in external core, Jupiter : metallic H*) \Rightarrow sustained B field

[Brain et al., 2003 ; Connerney et al., 2005]

- Remanent / ancient dynamo (Mars, Moon...)

Mars Global Surveyor (1996-2006) : no global magnetosphere, up to 10^{4-5} nT locally at surface (tectonics-related ?) \Rightarrow "mini-MS" form small bumps above the ionosphere, up to >1000 km altitude

- Induced (Jovian / Saturnian satellites)

Planet or satellite	Observed surface field (in T, approximate)	Comments and interpretation
Mercury	2×10^{-7}	Not well characterized or understood
Venus	$< 10^{-8}$ (global); no useful constraint on local fields.	No dynamo. Small remanence
Earth	5×10^{-5}	Core dynamo
Moon	Patchy (10 ⁻⁹ –10 ⁻⁷). Impact-generated? No global field	Ancient dynamo?
Mars	Patchy but locally strong $(10^{-9}-10^{-4})$ field	Ancient dynamo, remanent magnetic lineations
Jupiter	4.2×10^{-4}	Dynamo (extends to near surface)
Io	$< 10^{-6}$?	Complex (deeply imbedded in Jovian field)
Europa	10 ⁻⁷	Induction response (salty water ocean)
Ganymede	2×10^{-6}	Dynamo likely
Callisto	4×10^{-9}	Induction response (salty water ocean)
Saturn	2×10^{-5}	Dynamo (deep down)
Titan	$< 10^{-7}$	Need more data
Uranus	2×10^{-5}	Dynamo(uncertain depth)
Neptune	2×10^{-5}	Dynamo (uncertain depth)

1 G = 10⁻⁴ T = 10⁵ nT

[Stevenson, 2003]

Description / Representation

 $\nabla x B = 0$ out of the sources (above the planetary surface)

 \Rightarrow B = - $\nabla \psi$ (ψ = scalar potential)

 $|B| = M/r^3 (1+3\cos^2\theta)^{1/2} = B_e/L^3 (1+3\cos^2\theta)^{1/2}$

with $B_e = M/R_P^3$ = field intensity at the equatorial surface and r = L R_P

Equation of a dipolar field line : $r = L sin^2 \theta$

• Multipolar development in spherical harmonics :

```
\psi = R_P \Sigma_{n=1 \rightarrow \infty} (R_P/r)^{n+1} S_i^n + (r/R_P)^n S_e^n
```

Sⁿ_i = internal sources (currents)

 S_e^n = external sources (magnetopause currents, equatorial current disc ...) with

 $S_i^n = Σ_{m=0→n} P_n^m(\cos\theta) [g_n^m \cos \phi + h_n^m \sin \phi]$ $S_e^n = Σ_{m=0→n} P_n^m(\cos\theta) [G_n^m \cos \phi + H_n^m \sin \phi]$

 $P_n^m(\cos\theta)$ = orthogonal Legendre polynomials g_n^m , h_n^m , G_n^m , H_n^m = Schmidt coefficients (internal and external)

This representation is valid out of the sources (currents). Specific currents (e.g. equatorial disc at Jupiter & Saturn) are described by an additional explicit model, not an external potential.

Degree n=1 corresponds to the dipole, n=2 to quadrupole, n=3 to octupole, ...

Measurements

- remote : radio \Rightarrow existence, intensity, inclination of Jupiter's B field

+ rotation (magnetic longitude system III,1965.0 : P = 9 h 55 min 29.711 sec)

- in-situ : magnetometers along orbital or fly-by trajectories

Jupiter : Pioneer 10 & 11 (1973-74), Voyager 1 & 2 (1979), (Ulysses 1992, Galileo 1995-2003), Juno (\geq 2016) \Rightarrow intense, N anomaly, secular variation 1973-2019 detected recently

[Moore et al., 2018]

- Description up to order 3-5 (S,U,N), 9 (J), 14 (E) = truncations of higher order developments

Planète	Terre	Iuniter	Iuniter	Saturne	Uranus	Nentune
$P_{\rm r}$ (km)	6378	71372	71372	60330	25600	24765
$\mathbf{N}_{\mathbf{p}}$ (KIII)	0378 ICDE 2000	06		72	23000	24703
Nidele	IGRF 2000	00	V114	<u></u>	<u>Q</u> 3	08
g_1^0	-0.29615	+4.24202	+4.28077	+0.21535	+0.11893	+0.09732
\mathbf{g}_1^{1}	-0.01728	-0.65929	-0.75306	0	+0.11579	+0.03220
h_1^1	+0.05186	+0.24116	+0.24616	0	-0.15685	-0.09889
g_2^0	-0.02267	-0.02181	-0.04283	+0.01642	-0.06030	+0.07448
$\frac{\mathbf{g}_{2}^{1}}{\mathbf{g}_{2}^{1}}$	+0.03072	-0.71106	-0.59426	0	-0.12587	+0.00664
h_2^1	-0.02478	-0.40304	-0.50154	0	+0.06116	+0.11230
$\frac{g_2^2}{g_2^2}$	+0.01672	+0.48714	+0.44386	0	+0.00196	+0.04499
h_2^2	-0.00458	+0.07179	+0.38452	0	+0.04759	-0.00070
g_3^0	+0.01341	+0.07565	+0.08906	+0.02743	0	-0.06592
g_3^1	-0.02290	-0.15493	-0.21447	0	0	+0.04098
h_3^1	-0.00227	-0.38824	-0.17187	0	0	-0.03669
g_{3}^{2}	+0.01253	+0.19775	+0.21130	0	0	-0.03581
h_3^2	+0.00296	+0.34243	+0.40667	0	0	+0.01791
g_{3}^{3}	+0.00715	-0.17958	-0.01190	0	0	+0.00484
h ₃ ³	-0.00492	-0.22439	-0.35263	0	0	-0.00770
M^{t} dipolaire (G.R _P ³)	0.305	4.26		0.215	0.228	0.142
Inclinaison (B / Ω)	+11°	-9.6°		-0°	-58.6°	-46.9°
Offset centre dipôle	0.08	0.07		0.04	0.31	0.55
/ centre planète (R_p)						

- Jupiter (& Saturne) : current disk in centrifugal equator (300 MA, 5-50 x 5 RJ)
- Saturn : B aligned with rotation axis
- Mercury : N/S asymetry, magnetic equator shifted by 0,2 R_M Northward
- Uranus, Neptune : strongly offset & tilted B fields

Origin & size of the magnetospheres

Magnetopause

- Pressure equilibrium SW / planetary B :

 P_{SW} = KNm(Vcosχ)² = P_{MS} = $B_T^2/2\mu_o$ (K = 1-2) with B_T = B_P + B_C = 2 B_P at MP nose → MP shape and size

- MP sub-solar point :

 $R_{MP} = (2 B_{eq}^2/\mu_o KNmV^2)^{1/6}$ (dipolar field : $B_P = B_{eq} (1+3\cos^2\theta)^{1/2}/R^3$)

	Mercure	Terre	Jupiter	Saturne	Uranus	Neptune
R _P (km)	2 439	6 378	71 492	60 268	25 559	24 764
D orbitale (UA)	0.39	1	5.2	9.5	19.2	30.1
M_{dip} (G.km ³)	5.5×10^{7}	7.9×10^{10}	1.6×10^{15}	4.7×10^{13}	3.8×10^{12}	2.2×10^{12}
Champ à l'équateur B _e (G)	0.003	0.31	4.3	0.21	0.23	0.14
Inclinaison [B,Ω] (°) et sens	+14	+11.7	-9.6	-0.	-58.6	-46.9
$ \begin{array}{c} R_{MP} \left(R_{P} \right) \\ calculée \\ [mesurée] \end{array} $	1.4 [~1.5]	9 [~10]	40 [~90]	17 [~20]	22 [~18]	21 [~23]

[Encrenaz et al., 2003]

EARTH

- Bow Shock
- supersonic / super-Alfvénic flow
 - \Rightarrow bow shock ahead of MP

- in magnetosheath : slowed flow (V:4 for $M_A >> 1$)

$$\mathbf{E} = -\mathbf{V} \times \mathbf{B} \qquad \& \quad \nabla \times \mathbf{E} = -\partial \mathbf{B} \partial \mathbf{t}$$

$$\Rightarrow \partial \mathbf{B}/\partial t + \nabla \times (\mathbf{V} \times \mathbf{B}) = 0 \approx \nabla \times (\mathbf{V} \times \mathbf{B}) \approx \partial (\mathbf{V} \times \mathbf{B})/\partial \mathbf{X}$$

$$\Rightarrow$$
 B draping / pile-up (|V|.|B| = c^t)

[Spreiter et al., 1966]

Properties of Bow Shocks

plasma properties upstream and downstrean regions can be described in terms of :

- Bulk flow V
- Magnetic field B
- Plasma density ρ
- Pressure P
- BS position is sensitive to several factors (M_A, P_{dyn}, ...)
- BS can be classified with the θ_{Bn} angle:
 - $\theta_{Bn} \sim 0^{\circ}$ quasi-parallel
- $0^{\circ} < \theta_{Bn} < 90^{\circ}$ oblique
- θ_{Bn} ~ 90°
- quasi-perp

Rankine-Hugoniot (RH) relations

 $\left[\rho U_n\right] = 0$ 1- Mass conservation : \Rightarrow RH-1 2a- normal momentum cons.: $\rho U_n^2 + p + \frac{B^2}{\mu_n}$ \Rightarrow RH-2a 2b- transverse momentum cons.: $\left[\rho U_n \overline{U_t} + p + \frac{B_n \overline{B_t}}{u_n}\right] = 0 \Longrightarrow \text{RH-2b}$ 3- Energy conservation $\left[\rho U_n\left(\frac{1}{2}U^2 + \frac{\gamma}{\nu-1}\frac{P}{\rho}\right) + U_n\frac{B^2}{\mu} - \overline{U}.\overline{B}\frac{B_n}{\mu}\right] = 0 \Rightarrow \text{RH-3}$ 4- Magnetic flux cons.: $\vec{\nabla} \cdot \vec{B} = 0 \leftrightarrow [B_m] = 0 \implies RH-4$

- Cusp above magnetic poles : direct entry of SW plasma (but not main source of aurora !)
- At Mercury : asymetric $B \Rightarrow S$ cusp widely open \Rightarrow plasma bombardment of surface
- if no intrinsic B field \Rightarrow induced MS, bow shock, B draping, tail, but no cusp
- Jupiter's magnetic tail \Rightarrow extends to Saturn's orbit

Magnetosphere dynamics

Plasma circulation

- 2 convection cells + large scale E (dawn → dusk) inside Earth's MS
- energetic plasma inside MS
- quasi-permanent circumpolar aurora (\emptyset = 10°-20°)

- SW control (B_z) of MS activity : $B_N \neq 0$ when $B_z // B_P$

⇒ Open magnetosphere concept + Dungey cycle

[Dungey, 1961]

cycle of plasma and B field circulation in the Earth's magnetosphere

Plasma circulation

- Neutral (X) line at equator : penetration of plasma in MS \Rightarrow MP no more equipotential
- Auroral oval = limit open/closed field lines = projection of neutral line on ionosphere

- Corotation \Rightarrow plasmasphère
- Tail stores / releases energy and magnetic flux
- Poynting flux on obstacle : $P_m = B_{\perp}^2/\mu_o V \pi R_{obs}^2$

- Convection = Dungey Cycle : (θ relative to 12-24h line) $\mathbf{E}_{conv} = -\epsilon \mathbf{V}_{SW} \times \mathbf{B}_{SW}$ $= - \mathbf{E}_{o} \sin \theta \mathbf{e}_{r} - \mathbf{E}_{o} \cos \theta \mathbf{e}_{\theta} = 1/r \ \partial \phi / \partial \theta \mathbf{e}_{\theta}$ $\phi_{conv} \sim \epsilon V_{SW} \mathbf{B}_{SW} \mathbf{R} \mathbf{R}_{P} \sin \theta$

- Corotation :

$$\mathbf{E}_{\text{corot}} = -(\mathbf{\Omega} \times \mathbf{r}) \times \mathbf{B} = -\mathbf{\Omega} \operatorname{r} \mathbf{B} \ \mathbf{e}_{\mathbf{r}} = \partial \phi / \partial r \ \mathbf{e}_{\mathbf{r}}$$
$$\phi_{\text{corot}} \sim \mathbf{\Omega} \ \mathbf{B}_{e} \ \mathbf{R}_{P}^{2} / \mathbf{R}$$

 \Rightarrow équipotentials = flow lines of thermal plasma

 \Rightarrow superposition = global circulation

	Mercure	Terre	Jupiter	Saturne	Uranus	Neptune
R _p (km)	2 439	6 378	71 492	60 268	25 559	24 764
M _{dip} (G.km ³)	5.5×10^{7}	7.9×10^{10}	1.6×10^{15}	4.7×10^{13}	3.8×10^{12}	2.2×10^{12}
Champ à l'équateur B _e (G)	0.003	0.31	4.3	0.21	0.23	0.14
R _{MP} (R _P) calculée [mesurée]	1.4 [~1.5]	9 [~10]	40 [~90]	17 [~20]	22 [~18]	21 [~23]
B VS (nT)	10 (20)	4	0.8	0.4	0.2	0.13
Prot (h,m)	1407 h 30 m	24 h	9 h 55.5 m	10 h 39.4 m	17 h 14.4 m	16 h 6.6 m
E _{conv} (mV) [ε=0.15]	0.6	0.24	0.05	0.025	0.013	0.008
Δφ _{conv} (kV) [ε=0.15]	7	46	900	90	17	14
$\Delta \phi_{\text{corot}} (kV)$	0.002	90	400 000	12 000	1 500	1000
R_{S}/R_{MP}	0.02	0.8	4	4	4	3

Mercury

Plasma sources

- Solar Wind : cusp + diffusion/reconnection across Magnetopause (H & He, T~100 eV)
- Ionosphere : vertical diffusive equilibrium of cold plasma (T~0.1-1. eV)
- Satellites : Io : volcanism ⇒ plasma torus [Bagenal, 1994]
 - Titan : atmospheric escape

[Sittler et al;, 2005]

Enceladus : exosphere, plumes

[Dougherty et al., 2005]

- Rings, Icy satellites & Mercury's surfaces : sputtering / photo-dissociation + ionisation

[Young et al., 2005]

- Jupiter sources >> Saturn, Uranus, Neptune
- $N_{neutrals}/N_{plasma} = 100 @ Saturn, 0.003 @ Jupiter$
- Total MS mass ~ 10⁷ kg @ Earth, ~ 10¹⁰ kg @ Jupiter

- satellites = plasma sources in the corotation region, beyond the synchronous orbit (J, S...)

Planet	$R_{\rm p}$ [km]	Ω [rads/s]	$G_{\rm surf} [{ m ms}^{-2}]$	$R_{ m synch}/R_{ m planet}$	Plasma sources
Mercury	2440	1.24×10^{-6}	3.3	96	None
Earth	6371	$7.29 imes 10^{-5}$	9.8	6.6	Ionosphere
Jupiter	70000	1.77×10^{-4}	25.6	2.3	Io
Saturn	60000	$1.71 imes 10^{-4}$	10.8	1.8	Rings, moons
Uranus	25500	1.01×10^{-4}	8.6	3.2	Moons
Neptune	24830	1.01×10^{-4}	10.1	3.4	Moons

Plasma transport

- pickup / mass-loading \Rightarrow corotation + centrifugal force (interchange instability)
 - \Rightarrow radial transport \Rightarrow from corotation to sub-corotation
 - ⇒ internally driven "rotational" dynamics

 \Rightarrow Vasyliunas cycle (depends on B, R, Ω)

[Vasyliunas, 1983]

- Saturn : intermediate Earth - Jupiter ? Dungey + Vasyliunas cycles superimposed ?

- Uranus : convection \perp corotation \Rightarrow helicoidal plasma trajectories ?

Neptune : Magnetosphere alternately Earth-like & pole-on
 ⇒ no plasmasphere, mid-latitude aurorae

URANUS
Sporadic dynamics

[Louarn et al., 2014 ; 2015]

- Externally controlled :

Dungey cycle \Rightarrow substorms, + MS compressions

Currents, M-I & M-S coupling

$$e \times \sum_{\text{all species}} \left(\frac{\partial N_i}{\partial t} + \nabla N_i V_i = Q_i - L_i \right) \quad \Rightarrow \quad \nabla J = 0 \Rightarrow \text{ closed current circuits}$$

Magnetosphere - Ionosphere coupling

- radial diffusion from Io $\,\Rightarrow\,$ J $_r$

- plasma pick-up + mass-loading, acceleration to corotation by $J_r x B_{MS}$ at expense of ionospheric plasma momentum via $J_i x B_i$

 $\nabla J = 0 \implies J_i = J_r B_i / B_{MS} \sim 2R^3 J_r \le \sigma_i E_i \sim \sigma_i \Omega R B_e / R^3 R^{3/2} = \sigma_i \Omega B_e / R^{1/2}$

⇒ possible as long as $J_r \leq \sigma_i \Omega B_e / 2R^{7/2}$

- Corotation breakdown at 20-50 $\ensuremath{\mathsf{R}}_{\ensuremath{\mathsf{J}}}$

 \Rightarrow J_{//} max \Rightarrow main auroral oval at Jupiter

[Cowley & Bunce, 2001]

Magnetosphere-Satellites coupling

- Unmagnetized satellite / MS interaction (Io, Europa, Enceladus...)

⇒ Induced field $E = -V \times B_J$ with $V=V_{corot}-V_K$ (=57 km/s @ Io) $\Delta \phi \sim 2 R_{sat} E$ (=4x10⁵ V @ Io) ⇒ induced current (a few 10⁶ A)

 $M_A < 1$ (no bow shock) \Rightarrow Alfvén wings / unipolar inductor ?

[Goldreich & Lynden-Bell, 1969; Neubauer, 1980, Saur et al., 2002, Khurana, 2009]

Flow dominated by magnetic energy, dissipated powed : $P_d = \epsilon B_J^2/\mu_0 V \pi R_{obs}^2$ ($\epsilon \sim M_A \sim 0.15$)

- Magnetosphere-Satellites coupling
- Magnetized satellite / MS interaction (Ganymede, ~100 nT)
 - B reconnection \Rightarrow

[[]Gurnett et al., 1996, Kivelson et al., 1997]

Dissipated powed : $P_d = \epsilon k B_J^2 / \mu_o V \pi R_{obs}^2$ $(k = \cos^4(\theta/2) = 1; \epsilon \sim 0.15)$

Aurora and radio emissions

UV aurora

UV aurora

radio emission (LHC)

radio emission (RHC)

- Aurora : short wavelengths
- strong currents + low plasma density \Rightarrow e- acceleration 1-100 keV
- collisions, excitation de-excitation \Rightarrow aurora
- Earth : visible (O, N, N₂)

- Jupiter, Saturn : UV (H, H₂)

[Clarke et al., 2002]

- Io, Ganymede

[Roesler et al., 1999; Geissler et al., 1999; Feldman et al., 2000]

Downstream

- IR and X emissions (Jupiter)

• Aurora : radio emissions

[Zarka, 1998]

[Zarka, 1998]

Radiation mechanism : the Cyclotron Maser Instability

- Highly magnetized medium ($f_{pe} \ll f_{ce}$)
- keV electrons

$$\omega = \omega_c / \Gamma - k_{\parallel} v_{\parallel} \qquad \circ$$

$$\gamma = \frac{\omega_p^2 c^2}{8\omega_c} \int_0^{2\pi} v_{\perp}^2(\theta) \nabla_{v_{\perp}} f(\mathbf{v}_0, \mathbf{R}(\theta)) d\theta \text{ with } \omega > \omega$$

- \rightarrow broad frequency range (f ~ f_{ce} $_{\propto}$ |B|)
- \rightarrow intense (T_B~10¹⁵⁻²⁰ K)
- \rightarrow sporadic (msec-hour)
- \rightarrow anisotropic (widely open hollow cone)
- \rightarrow circularly/elliptically polarized (X mode)

[Wu, 1985 ; Treumann, 2006 ; Hess et al., 2008]

- loss-cone (a) : $V_{//0} = c.cos\theta = V/cosa \Rightarrow \theta = cos^{-1}(V/c.cosa) < 90^{\circ} (\theta \downarrow \text{ for } V \text{ or } f^{\uparrow})$

- horseshoe/shell (E_{//}) : $V_{//o} = c.cos\theta \sim 0$ $\theta \sim 90^{\circ}$ ($\forall f$) intensity \uparrow with V

Radiation belts

- MeV ions and electrons \Rightarrow synchrotron emission

 $T_B(K)$

-

- no radiation belt at Mercury ?
- Uranus ? Neptune ?

Radio Observations & Simulations

• S/C wave & particles instrumentation

Cassini : RPWS (radio & plasma waves), CAPS,
 INMS (thermal plasma), MIMI (energetic plasma & ENA)

+ ISS (Imaging), UVIS, VIMS, CIRS (UV/IR spectro-imagers), MAG (magnetometer), RSS (radio science), CDA (dust)

• In-source measurements : Earth (Viking)

[de Féraudy et al., 1988 ; Bahnsen et al., 1989 ; Roux et al., 1993]

• In-source measurements : Saturn (Cassini)

[Lamy et al., 2010, 2011]

• In-source measurements : Jupiter (Juno)

• Remote measurements : Saturn (Cassini/RPWS goniopolarimetry)

• Remote measurements : Jupiter (Nançay)

[Lamy et al., 2017]

- emission catalog over 30+ years \Rightarrow statistical studies

[Marques et al., 2017]

- detection (+ energetics) of Ganymede-Jupiter radio emissions

- high time-frequency measurements \Rightarrow S-bursts \Rightarrow microphysics

[Queinnec & Zarka, 2001 ; Zarka, 2004]

Time in sec.

[Su et al. 2006, Hess et al., 2007a]

- discovery of kV double-layers / electron & ion holes along IFT

- DL motion along the IFT at the local plasma sound velocity

• Time-frequency radio arcs & simulations (ExPRES)

- Exoplanetary & Planetary Radio Emissions Simulator

- \rightarrow Inputs: source(s) field line, B model, CMI, df/dv₁ (loss-cone/shell, e- energy), cone thickness $\delta\theta$, observing geometry
- \rightarrow Outputs: occurrence & polarization sense (t,f)

[Hess et al., 2008, 2011]

- Favours loss-cone driven (oblique) CMI for Io-Jupiter arcs

Nançay observations

Juno/Waves observations

[Hess et al., 2008, 2011]

Application to Exoplanets

• Magnetospheric structure & dynamics strongly different at each planet

 \rightarrow need for comparative exo-magnetospheric physics

• Magnetospheric radio emissions ?

- detectable from exoplanets ? \rightarrow Jupiter at \leq 0.2 pc with LOFAR

• Radio-magnetic scaling law \rightarrow predicted intensities

[Nichols, 2011, 2012]

[Willes & Wu, 2004, 2005]

- Magnetic field decay for hot Jupiters ?
 - Hot Jupiters \Rightarrow Spin-orbit synchronisation (tidal forces) $\Rightarrow \omega \downarrow$ but $M \propto \omega^{\alpha}$ with $\frac{1}{2} \leq \alpha \leq 1 \Rightarrow M \downarrow$ (B decay) ?
 - Internal structure + convection models

 \Rightarrow self-sustained dynamo \Rightarrow M could remain \geq a few G.R_J³

[Sanchez-Lavega, 2004]

- More favourable predictions for fast rotators

[Reiners & Christensen, 2010]

- Weak expected signal requires large instruments
- Star-Planet discrimination : polarization (circular) + periodicities (rotation, orbital)

ExPRES simulations

[Hess & Zarka, 2011]

• What can we learn ?

- Planetary $|B| \& tilt \Rightarrow dynamo \Rightarrow planetary interior structure$
- Planetary rotation \Rightarrow spin-orbit locking ?
- Presence of satellites
- Orbit inclination
- Star-Planet plasma Interactions : type, energetics
 - \Rightarrow comparative exo-magnetospheric physics, exo-space weather

- implications for exobiology (magnetosphere limits atmospheric erosion by SW and CME, cosmic ray bombardment)
Perspectives

- Planetary / magnetospheric space missions
 - ongoing : Juno, Maven, Cluster, Themis
 - incoming : BepiColombo, Juice
 - projects : Uranus/Neptune ...

• Present / Future large low-frequency radiotelescopes

Moon- / space-based low-frequency radiotelescopes

~ No ionosphere, low RFI level (farside, night) \rightarrow range \leq 30 MHz accessible

Magnetospheres

- Plasma physics laboratories
- Large diversity of scales and plasma environments
- "Ground truth" for astrophysical applications

• Heliosphere

Astrospheres

Mira Ultraviolet GALEX

Merci.