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These are the notes for my lectures on Kinetic Theory of Plasmas and on Magnetohy-
drodynamics, taught since 2014 as part of the MMathPhys programme at Oxford. Part
I contains the lectures on plasma kinetics that formed part of the course on Kinetic
Theory, taught jointly with Paul Dellar and James Binney. Part II is an introduction to
magnetohydrodynamics, which was part of the course on Advanced Fluid Dynamics,
taught jointly with Paul Dellar. These notes have evolved from two earlier courses:
“Advanced Plasma Theory,” taught as a graduate course at Imperial College in 2008,
and “Magnetohydrodynamics and Turbulence,” taught as a Mathematics Part III course
at Cambridge in 2005-06. I will be grateful for any feedback from students, tutors or
sympathisers.
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PART I
Kinetic Theory of Plasmas

1. Kinetic Description of a Plasma

We shall study a gas consisting of charged particles—ions and electrons. In general,
there may be many different species of ions, with different masses and charges, and, of
course, only one type of electrons.

I shall index particle species by a (o = e for electrons, « = 4 for ions). Each is
characterised by its mass m, and charge q, = Z,e, where e is the magnitude of the
electron charge and Z, is a positive or negative integer (e.g., Z, = —1).

1.1. Quasineutrality

We shall always assume that plasma is neutral overall:
> GaNa =€V Zana =0, (1.1)

where N, is the number of the particles of species «, i, = N, /V is their mean number
density and V' the volume of the plasma. This condition is known as quasineutrality.

1.2. Weak Interactions

Interaction between charged particles is governed by the Coulomb potential:

() @)y qaqdo’
(25(‘1"1 _Tj |) - _|r(a) r(a/)|a (12)
il

where by rz(-a) I mean the position of the i-th particle of species a. We can safely
anticipate that we will only be able to have a nice closed kinetic description if the gas is
approximately ideal, i.e., if particles interact weakly, viz.,

2
kT > ® ~ % ~e?nl/3, (1.3)

where kg is the Boltzmann constant, which will henceforth be absobed into the tem-
perature T, and Ar ~ n~'/3 is the typical interparticle distance. Let us see what this
condition means and implies physically.

1.3. Debye Shielding

Let us consider a plasma in thermodynamic equilibrium (as one does in statistical
mechanics, I will refuse to discuss, for the time being, how exactly it got there). Take one
particular particle, of species a. It creates an electric field around itself, E = —V; all
other particles are sitting in this field (Fig. 1)—and, indeed, also affecting it, as we will
see below. In equilibrium, the densities of these particles ought to satisfy Boltzmann’s
formula:

™)/T Ny —

Na'qa’ P

ad (1.4)
where 7i,s is the mean density of particles of species o and ¢(r) is the electrostatic
potential, which depends on the distance r from our “central” particle. As r — oo, ¢ — 0
and n, — Ny . The exponential can be Taylor-expanded provided the weak-interaction
condition (1.3) is satisfied (ep < T).

N (1) = Ny e~ dar Pl
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FIGURE 1. A particle amongst particles and its Debye sphere.

By the Gauss—Poisson law, we have

V. -E = —V?%p =4mq,6(r) + 47TZQa/na’

47T7Tl / 2/
~ 4Amqad(r) + 472Qa’ﬁa’ - <Z ;%) ®- (1.5)

[o% al

=0 by =1/X}

quasineutral-
ity
In the first line of this equation, the first term on the right-hand side is the charge
density associated with the “central” particle and the second term the charge density
of the rest of the particles. In the second line, I used the Taylor-expanded Boltzmann
expression (1.4) for the particle densities and then the quasineutrality (1.1) to establish
the vanishing of the second term. The combination that has arisen in the last term as
a prefactor of ¢ has dimensions of inverse square length, so we define the Debye length
to be

AT g2 e

[e3%

Using also the obvious fact that the solution of (1.5) must be spherically symmetric, we
recast this equation as follows
10 ,00 1
— — 7L — — = —4mwq,0(r). 1.7
r29r  Or /\QDL'D 9a0(r) (1.7)
The solution to this that asymptotes to the Coulomb potential ¢ — ¢, /r as r — 0 and
to zero as r — o0 is
p= o o=r/xp (1.8)
r
Thus, in a quasineutral plasma, charges are shielded on typical distances ~ Ap.
Obviously, this calculation only makes sense if the “Debye sphere” has many particles
in it, viz., if

nAd > 1. (1.9)
Let us check that this is the case: indeed,

T \3/2 T \3/?2
3 L —
nAp ~ n <ne2> = (n1/362) > 1, (1.10)
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provided the weak-interaction condition (1.3) is satisfied. The quantity nAd is called the
plasma parameter.

1.4. Micro- and Macroscopic Fields

This calculation tells us something very important about electromagnetic fields in a
plasma. Let E(micm)(r,t) and B(micro)(r,t) be the exact microscopic fields at a given
location r and time t. These fields are responsible for interactions between particles. On
distances | < Ap, these will be essentially just two-particle interactions—binary collisions
between particles in a vacuum, just like in a neutral gas (except the interparticle potential
is a Coulomb potential). In contrast, on distances [ 2 Ap, individual particles’ fields are
shielded and what remains are fields due to collective influence of large numbers of
particles—macroscopic fields:

E(micro) — <E(micro)> —|—5E7 B(micro) — <B(micro)> —|—5B, (111)
—— —
=F =B

where the macroscopic fields E and B are averages over some intermediate scale [ such
that

Ar ~ =13

<1l < Ap. (1.12)
Such averaging is made possible by the condition (1.9).

Thus, plasma has a new feature compared to neutral gas: because the Coulomb
potential is long-range (o< 1/r), the fields decay on a length scale that is long compared
to the interparticle distances [A\p > Ar ~ n~/3 according to (1.9)] and so, besides
interactions between individual particles, there are also collective effects: interaction of
particles with mean macroscopic fields due to all other particles.

Before I use this approach to construct a description of the plasma as a continuum (on
scales 2 Ap), let us check that particles travel sufficiently long distances between collisions
in order to feel the macroscopic fields, viz., that their mean free paths Ang, > Ap. The
mean free path can be estimated in terms of the collision cross-section o:

Amfp ~ — ~ — (1.13)

because o ~ d? and the effective distance d by which the particles have to approach
each other in order to have significant Coulomb interaction is inferred by balancing the
Coulomb potential energy with the particle temperature, €2/d ~ T. Using (1.13) and
(1.6), we find

Amie T2 [ne2\ V2
duty | I (7@;) ~ad > 1 qed (1.14)
D

Thus, it makes sense to talk about a particle travelling long distances experiencing the
macroscopic fields exerted by the rest of the plasma collectively before being deflected
by a much larger, but also much shorter-range, microscopic field of another individual
particle.
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1.5. Mazwell’s Equations

The exact microscopic fields satisfy Mazwell’s equations and, as Maxwell’s equations
are linear, so do the macroscopic fields: by direct averaging,

v <E(micro)> _ 47_r<0,(micro)>7 (1]_5)
V. <B(micro)> =0, (1.16)
) 1 8<B(micro)>
E(mlcro) i S A, 1.1
V x < > + c ot 07 ( 7)
) 1 8<E(micro)> A7 o
B(mlcro) _ -9\~ 7 _ =" (micro) ) 1.1
V x ( )~ - (g (1.18)

The new quantities here are the averages of the microscopic charge density o (™) and
the microscopic current density 5™ . How do we calculate them?

Clearly, they depend on where all the particles are at any given time and how fast
these particles move. We can assemble all this information in one function:

(r,v,t) 263 r—rl® ))53( vga)(t)), (1.19)

where r( )( t) and v( )( t) are the exact phase-space coordinates of particle i of species
a at time t, i.e., these are the solutions of the exact equations of motion for all these
particles moving in microscopic fields E(micro)(t,'r) and B (¢ 7). The function F,
is called the Klimontovich distribution function. It is a random object (i.e., it fluctuates
on scales < Ap) because it depends on the exact particle trajectories, which depend on
the exact microscopic fields. In terms of this distribution function,

o(miero) () — Z G /dgv Fy(r,v,t), (1.20)
G micro) (g 4y = Z Ga /dgv vF,(r,v,t). (1.21)

We now need to average these quantities for use in (1.15) and (1.18). We shall assume
that the average over microscales (1.12) and the ensemble average (i.e., average over
many different initial conditions) are the same. The ensemble average of F,, is an object
familiar from the kinetic theory of gases, the so-called one-particle distribution function:

(Fo) = fra(r,v,1) (1.22)

(I shall henceforth omit the subscript 1). If we learn how to compute f,, then we can
average (1.20) and (1.21), substitute into (1.15) and (1.18), and have the following set of
macroscopic Maxwell’s equations:

V,E:ME:%/&vh@m@, (1.23)
V-B =0, (1.24)
10B
E+-—= 1.2
VxE+-—5 =0, (1.25)

10E 4rm
B--"—"=" o | Bvvfa(r,v,t). 1.2
V x Cza:q/ v fo(r,v,t) (1.26)
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1.6. Viasov-Landau Equation

We now need an evolution equation for f, (7, v,t), hopefully in terms of the macroscopic
fields E(r,t) and B(r,t), so we can couple it to (1.23-1.26) and thus have a closed system
of equations describing our plasma.

The process of deriving it starts with Liouville’s theorem and is a direct generalisation
of the BBGKY procedure familiar from gas kinetics (e.g., Dellar 2015)! to the somewhat
more cumbersome case of a plasma:

—many species «;

—Coulomb potential for interparticle collisions (with some attendant complications to
do with its long-range nature: in brief, use Rutherford’s cross section and cut off long-
range interactions at Ap; this is described in many textbooks and plasma-physics courses,
e.g., Parra 2018a);

—rpresence of forces due to the macroscopic fields E and B.

The result of this derivation is

dfa _(9fa
E—i_{faaHla}— (015)6 (1'27)

The Poisson bracket contains Hi,, the Hamiltonian for a single particle of species a
moving in the macroscopic electromagnetic field—all the microscopic fields dE? are gone
into the collision operator on the right-hand side, of which more will be said shortly (§1.7).

Technically speaking, we ought to be working with canonical variables, but dealing
with canonical momenta is an unnecessary complication and so I shall stick to the (r,v)
representation of the phase space. Then (1.27) takes the form of Liouville’s equation, but
with microscopic fields hidden inside the collision operator:

Ofa 0 o\ O . (0fa
8t+ar'(rf“)+av'(”f“)_<at>c’ (1.28)
where
=, @:‘IO‘(E+”XB). (1.29)
M, c
This gives us the Viasov-Landau equation:
Ofa qo vx B Ofa N Ofa
or Y VJca_'—ma <E+ c > v \ ot ).’ (1.30)

Any other macroscopic force that the plasma might be subject to (e.g., gravity) can
be added to the Lorentz force in the third term on the left-hand side, as long as its
divergence in velocity space is (0/9v) - force = 0. Equation (1.30) is closed by Maxwell’s
equations (1.23-1.26).

1.7. Collision Operator

Finally, a few words about the plasma collision operator, originally due to Landau
(1936) (the same considerations apply to the the more general Lenard—Balescu operator;
see Balescu 1963 and §8.2.1). It describes two-particle collisions both within the species «
and with other species o’ and so depends both on f,, and on all other f,. Its derivation is
left to you as an exercise in BBGKY’ing, calculating cross sections and velocity integrals
(or in googling; shortcut: see Parra 2018a). In these Lectures, I shall largely focus on

n §1.8, T will sketch Klimontovich’s version of this procedure (Klimontovich 1967).

25B turns out to be irrelevant as long as the particle motion is non-relativistic, v /e K 1.
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collisionless aspects of plasma kinetics. Whenever we find ourselves in need of invoking
the collision operator, the important things about it for us will be its properties:

e conservation of particles,
of.
o —==) =0 1.31
fao (%), -3y

(within each species «);
e conservation of momentum,

%:/d?’v M (%&‘)C =0 (1.32)

(same-species collisions conserve momentum, whereas different-species collisions conserve
it only after summation over species—there is friction of one species against another; for
example, the friction of electrons against the ions is the Ohmic resistivity of the plasma);

e conservation of energy,
mav? [ Of
Po—2— (=2 =0 1.33
3 [ (%) - a3
«
e Boltzmann’s H-theorem: the kinetic entropy

S = —Z/d3r/d3vfa In fo (1.34)

cannot decrease, and, as S is conserved by all the collisionless terms in (1.30), the collision
operator must have the property that

% = —Z/d3r/d3v <88"%> Inf, >0, (1.35)

with equality obtained if and only if f, is a local Maxwellian;

e unlike the Boltzmann operator for neutral gases, the Landau operator expresses
the cumulative effect of many glancing (rather than “head-on”) collisions (due to the
long-range nature of the Coulomb interaction) and so it is a Fokker—Planck operator:®

0fa) = 0 P
(315)0 B ; dv;

A1+ 2Dl ) fa 1.36
(At + g D101 (1.36)
where the drag AE“"‘/)[faf] and diffusion ng-““')[faf] coefficients are integral (in v space)
functionals of f,/. The Fokker—Planck form (1.36) of the Landau operator means that it
describes diffusion in velocity space and so will erase sharp gradients in f, with respect
to v—a property that we will find very important in §4.

1.8. Klimontovich’s Version of BBGKY

By way of a technical digression, let me outline the (beginning of the) derivation of (1.30) due
to Klimontovich (1967). Consider the Klimontovich distribution function (1.19) and calculate

3The simplest example that I can think of in which the collision operator is a velocity-space
diffusion opeartor of this kind is the gas of Brownian particles [each with velocity described by
Langevin’s equation (10.61)]. This is treated in detail in §6.9 of Schekochihin (2018).
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its time derivative: by the chain rule,

(o)
5 =3 dT(t)[aiM KO0 (v - 1)
SO [ 0 -l 0)] (137

First, because r(a) (t) and v(a)( t) obviously do not depend on the phase-space variables r and
v, the derivatives 0/0r and 0/0v can be pulled outside, so the right-hand side of (1.37) can be
Written as a divergence in phase space. Secondly, the particle equations of motion give us

dr(®(t o
ldit() — @), (1.38)
Al (1) _ ga | pmicro) (0 v (1) x B™) (n{™ (1), t

which we substitute into the right-hand side of (1.37)—after it is written in the divergence form.
As the time derivatives of r{®(¢) and v{®(¢) inside the divergence multiply delta functions

identifying r{* (¢) with r and v{* (t) with v, we may replace 7\*)(t) by r and v{*)(¢) by v in
the right-hand sides of (1.38) and (1.39) when they go into (1.37). This gives (wrapping all the
sums of delta functions back into Fy)

OF. 0 [ 4a ( pmiero) v x Bmicro) (5 ¢)
5 =~V (0F) - o {ma (E (ryt) + = ) Fa . (1.40)

Finally, because r and v are independent variables and the Lorentz force has zero divergence in
v space, we find that F,, satisfies exactly

=0]. (1.41)

Fa et micro
0 v-VFa+q—(E( ) +

v X B(micro) 8Fa
ot Ma

ov

C

This is the Klimontovich equation. There is no collision integral here because microscopic fields
are explicitly present. The equation is closed by the microscopic Maxwell’s equations:

V- EMT) = 4n " qq /dSv Fo(r, 0, 1), (1.42)
Vv - B™i) — ) (1.43)
V x gmiero) | %% —0, (1.44)
v g L aEg“‘” 4; G / Ao vFa(r,v,t). (1.45)

Now we separate the microscopic fields into mean (rnacroscopic) and fluctuating parts ac-
cording to (1.11); also

Fo= (F.) + oFn. (1.46)
—~—

= fa
Maxwell’s equations are linear, so averaging them gives the same equations for E and B in
terms of f, [see (1.23-1.26)] and for éE and 0B in terms of dF,. Averaging the Klimontovich
equation (1.41) gives the Vlasov—Landau equation:

8fa vXx B\ 0Ofa
ot TV Vet Q<E+ c )'av

:_&<<5E+UX63),85F0‘>
Ma c ov

<88i:>c. (1.47)
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The macroscopic fields in the left-hand side satisfy the macroscopic Maxwell’s equations (1.23—
1.26). The microscopic fluctuating fields 0E and 0B inside the average in the right-hand side
satisfy microscopic Maxwell’s equations with fluctuating charge and current densities expressed
in terms of 6F,,. Thus, the right-hand side is quadratic in 6F,. In order to close this equation, we
need an expression for the correlation function (0Fn0F,/) in terms of f, and f,s. This is basically
what the BBGKY procedure plus truncation of velocity integrals based on an expansion in 1/n)\%
achieve. The result is the Landau collision operator (or the more precise Lenard-Balescu one;
see Balescu 1963 and §8.2.1).

Further details are complicated (see Klimontovich 1967), but my aim here was just to show
how the fields are split into macroscopic and microscopic ones, with the former appearing
explicitly in the kinetic equation and the latter wrapped up inside the collision operator. The
presence of the macroscopic fields and the consequent necessity for coupling the kinetic equation
with Maxwell’s equations for these fields is the main mathematical difference between the kinetics
of neutral gases and the kinetics of plasmas.

1.9. So What’s New and What Now?

Let me summarise the new features that have appeared in the kinetic description of a
plasma compared to that of a neutral gas.

e First, particles are charged, so they interact via Coulomb potential. The collision
operator is, therefore, different: the cross-section is the Rutherford cross-section, most
collisions are glancing (with interaction on distances up to the Debye length), leading to
diffusion of the particle distribution function in velocity space. Mathematically, this is
manifested in the collision operator in (1.30) having the Fokker—Planck structure (1.36).

One can spin out of the Vlasov—Landau equation (1.30) a theory that is analogous
to what is done with Boltzmann’s equation in gas kinetics (Dellar 2015): derive
fluid equations, calculate viscosity, thermal conductivity, Ohmic resistivity, etc., of a
collisionally dominated plasma, i.e., of a plasma in which the collision frequency of the
particles is much greater than all other relevant time scales. This is done in the same
way as in gas kinetics, but now applying the Chapman—Enskog procedure to the Landau
collision operator. This is quite a lot of work—and constitutes core textbook plasma-
physics material (see Parra 2018a). In magnetised plasmas especially, the resulting fluid
dynamics of the plasma are quite interesting and quite different from neutral fluids—we
shall see some of this in Part II of these Lectures, while the classic treatment of the
transport theory can be found in Braginskii (1965); a great textbook on this is Helander
& Sigmar (2005).4

e Secondly, Coulomb potential is long-range, so the electric and magnetic fields have a
macroscopic (mean) part on scales longer than the Debye length—a particle experiencing
these fields is not undergoing a collision in the sense of bouncing off another particle,
but is, rather, interacting, via the fields, with the collective of all the other particles.
Mathematically, this manifests itself as a Lorentz-force term appearing in the right-hand
side of the Vlasov-Landau kinetic equation (1.30). The macroscopic E and B fields that
figure in it are determined by the particles via their mean charge and current densities
that enter the macroscopic Maxwell’s equations (1.23-1.26).

In the case of neutral gas, all the interesting kinetic physics is in the collision operator,
hence the focus on transport theory in gas-kinetic literature (see, e.g., the classic mono-
graph by Chapman & Cowling 1991 if you want an overdose of this). In the collisionless

*See Krommes (2018) for a modernist approach.
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limit, the kinetic equation for a neutral gas,

of

o T V=0, (1.48)
simply describes particles with some initial distribution ballistically flying in straight
lines along their initial directions of travel. In contrast, for a plasma, even the collisionless
kinetics (and, indeed, especially the collisionless—or weakly collisional—Xkinetics) are
interesting and nontrivial because, as the initial distribution starts to evolve, it gives
rise to charge densities and currents, which modify E and B, which modify f,, etc. This
opens up a whole new conceptual world and it is on these effects involving interactions
between particles and fields that I shall focus here, in pursuit of maximum novelty.®

I shall also be in pursuit of maximum simplicity (well, “as simple as possible, but not
simpler”!) and so will mostly restrict my considerations to the “electrostatic approzima-
tion”:

B=0, E=-Vo. (1.49)

This, of course, eliminates a huge number of interesting and important phenomena
without which plasma physics would not be the voluminous subject that it is, but we
cannot do them justice in just a few lectures (so see Parra 2018b for a course mostly
devoted to collisionless magnetised plasmas).

Thus, we shall henceforth focus on a simplified kinetic system, called the Viasov—
Poisson system:

8fa o afoz
o PO Ve, (V) 5y

V2o =41 qa /d% fa- (1.51)

=0, (1.50)

Formally, considering a collisionless plasma® would appear to be legitimate as long as

the collision frequency is small compared to the characteristic frequencies of any other
evolution that might be going on. What are the characteristic time scales (and length
scales) in a plasma and what phenomena occur on these scales? These questions bring
us to our next theme.

2. Equilibrium and Fluctuations
2.1. Plasma Frequency

Consider a plasma in equilibrium, in a happy quasineutral state. Suppose a population
of electrons strays from this equilibrium and upsets quasineutrality a bit (Fig. 2). If they

5Similarly interesting things happen when the field tying the particles together is gravity—an
even more complicated situation because, while the potential is long-range, rather like the
Coulomb potential, gravity is not shielded and so all particles feel each other at all distances.
This gives rise to remarkably interesting theory (Binney 2016).

50r, T stress again, a weakly collisional plasma. The collision operator is dropped in (1.50), but
let us not forget about it entirely even if the collision frequency is small; it will make a come
back in §4.
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FIGURE 2. A displaced population of electrons will set up a quasineutrality-restoring electric
field, leading to plasma oscillations.

have shifted by distance dx, the restoring force on each electron will be

4me?n,
medi = —eE = —4ne’n.dr =  0i = — ren

ox, (2.1)
me
——

so there will be oscillations at what is known as the (electron) plasma frequency:

4 2
wpe = | =L (2.2)

Me

Thus, we expect fluctuations of electric field in a plasma with characteristic frequencies
w ~ wpe (these are Langmuir waves; I will derive their dispersion relation rigorously in
§3.4). These fluctuations are due to collective motions of the particles—so they are still
macroscopic fields in the nomenclature of §1.4.

The time scale associated with wy, is the scale of restoration of quasineutrality. The
distance an electron can travel over this time scale before the restoring force kicks in,
i.e., the distance over which quasineutrality can be violated, is (using the thermal speed
Uthe ~ /T /M. to estimate the electron’s velocity)

Uthe ,/ ,/ ~ Ap, (2.3)
e2n, e2n,

the Debye length (1.6)—n0t surprising, as this is, indeed, the scale on which microscopic
fields are shielded and plasma is quasineutral (§1.3).

Finally, let us check that the plasma oscillations happen on collisionless time scales.
The collision frequency of the electrons is

Uthe Uthe Wpe )\D
Ve ~ —2 = 1€ TPC Wpe K Wpe, q.e.d., (2.4)
Amfp Wpe )\mfp Amfp

using (2.3) and (1.14).

2.2. Slow vs. Fast

The plasma frequency wpe is only one of the characteristic frequencies (the largest)
of the fluctuations that can occur in plasmas. We will think of the scales of all these
fluctuations as short and of the associated variation in time and space as fast. They occur
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against the background of some equilibrium state,” which is either constant or varies
slowly in time and space. The slow evolution and spatial variation of the equilibrium
state can be due to slowly changing, large-scale external conditions that gave rise to this
state or, as we will discover soon, it can be due to the average effect of a sea of small
fluctuations.

Formally, what we are embarking on is an attempt to set up a mean-field theory,
separating slow (large-scale) and fast (small-scale) parts of the distribution function:

flrv,t) = fo(e*r, v, et) + of (r, v, t), (2.5)

where € is some small parameter characterising the scale separation between fast and
slow variation (note that this separation need not be the same for spatial and time
scales, hence €%). To avoid clutter, I shall drop the species index where this does not lead
to ambiguity.

For simplicity, I will drop the spatial dependence of the equilibrium distribution
altogether and consider homogeneous systems:

fo = fo(v,et), (2.6)

which also means Ey = 0 (there is no equilibrium electric field). Equivalently, we restrict
all our considerations to scales much smaller than the characteristic system size. Formally,
this equilibrium distribution can be defined as the average of the exact distribution over
the volume of space that we are considering and over time scales intermediate between
the fast and the slow ones:®

t+AL/2 3
fotort) = roy= 5 [ [ prot), (2.7)

—At)2

where w™! < At < toq, where toq is the equilibrium time scale.

2.3. Multiscale Dynamics

We will find it convenient to work in Fourier space:

o(r,t) = Zeik"'cpk(t), f(r,v,t) = folv,t) + Z e® T (v, ). (2.8)
k

k

Then the Poisson equation (1.51) becomes
4
ok =13 > o / d®v g (2.9)

and the Vlasov equation (1.50) written for & = 0 (i.e., the spatial average of the
equation) is

f  Ofio  a odfi
o0 "o m%:“”*“"’ v (2.10)

"Or even just an initial state that is slow to change.

81 use anglular brackets to denote this average, but it should be clear that this is not the same
thing as the average (1.11) that allowed us to separate macroscopic fields from microscopic ones.
The latter was over sub-Debye scales, whereas our new average is over scales that are larger
than fluctuation scales but smaller than the system scales; both fluctuations and equilibrium
are “macroscopic” in the language of §1.4.
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where we can replace ¢_p = ¢}, because @(r,t) must be real. Averaging over time
according to (2.7) eliminates fast variation and gives us

o __a e QT
ot m 4 il v

The right-hand side of (2.11) gives us the slow evolution of the equilibrium (mean)
distribution due to the effect of fluctuations (§§7, 8). In practice, the main question is
often how the equilibrium evolves and so we need a closed equation for the evolution of fj.
This should be obtainable at least in principle because the fluctuating fields appearing
in the right-hand side of (2.11) themselves depend on fy: indeed, writing the Vlasov
equation (1.50) for the k # 0 modes, we find the following evolution equation for the
fluctuations:

(2.11)

o) 0 1ol /
6{k+zkz vdfk:—gakk ﬁ+qz orik’ - f’“ b (2.12)
~—
particle wave-particle nonlinear
streaming interaction interactions
(phase (linear)
mixing)

The three terms that control the evolution of the perturbed distribution function in (2.12)
represent the three physical effects that I shall focus on in these Lectures. The second
term on the left-hand side represents free ballistic motion of particles (“streaming”). It
will give rise to the phenomenon of phase mixing (§4) and, in its interplay with plasma
waves, to Landau damping and kinetic instabilities (§§3, 5.1). The first term on the right-
hand side contains the interaction of the electric-field perturbations (waves) with the
equilibrium particle distribution (§83, 7). The second term on the right-hand side of (2.12)
has nonlinear interactions between fluctuating fields and the perturbed distribution—it
is negligible when fluctuation amplitudes are small enough (which, sadly, they rarely
are) and responsible for plasma turbulence (§§8-10) and other nonlinear phenomena (§6)
when they are not.

The programme for determining the slow evolution of the equilibrium is “simple”:
solve (2.12) together with (2.9), calculate the correlation function of the fluctuations,
(¢50fr), as a functional of fy, and use it to close (2.11); then proceed to solve the latter.
Obviously, this is impossible to do in most cases. But it is possible to construct a hierarchy
of approximations to the answer and learn much interesting physics in the process.

2.4. Hierarchy of Approximations
2.4.1. Linear Theory

Consider first infinitesimal perturbations of the equilibrium. All nonlinear terms can
then be ignored, (2.11) turns into fy = const and (2.12) becomes

96y 9fo
ot v’

the linearised kinetic equation. Solving this together with (2.9) allows one to find oscillat-
ing and/or growing/decaying® perturbations of a particular equilibrium fy. The theory

+ ik - 1)(ka = — gpk ik - (213)

9We shall see (§4) that growing/decaying linear solutions imply the equilibrium distribution
giving/receiving energy to/from the fluctuations.
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for doing this is very well developed and contains some of the core ideas that give plasma
physics its intellectual shape (§83, 5.1).

Physically, the linear solutions will describe what happens over short term, viz., on
times t such that

wh Kt <K teq OF Ly, (2.14)

where w is the characteristic frequency of the perturbations, t.q is the time after which the
equilibrium starts getting modified by the perturbations [which depends on the amplitude
to which they can grow: see the right-hand side of (2.11); if perturbations do grow, i.e.,
the equilibrium is unstable, they can modify the equilibrium by this mechanism so as
to render it stable], and ¢, is the time at which perturbation amplitudes become large
enough for nonlinear interactions between individual modes to matter [second term on
the right-hand side of (2.12); if perturbations grow, they can saturate by this mechanism)].

2.4.2. Quasilinear Theory (QLT)
Suppose
teq < tl’lh (2.15)

i.e., growing perturbations start modifying the equilibrium before they saturate nonlinearly.
Then the strategy is to solve (2.13) [together with (2.9)] for the perturbations, use the
result to calculate their correlation function needed in the right-hand side of (2.11), then
work out how the equilibrium therefore evolves and hence how large the perturbations
must grow in order for this evolution to turn the equilibrium from one causing the
instability to a stable one. This is a classic piece of theory, important conceptually—I
will describe it in detail and do one example in §7 and another in Q9. In reality, however,
it happens relatively rarely that unstable perturbations saturate at amplitudes small
enough for the nonlinear interactions not to matter (i.e., for tn > teq).

2.4.3. Weak-Turbulence Theory

Sometimes, one is not lucky enough to get away with QLT (so ¢y < teq), but is lucky
enough to have perturbations saturating nonlinearly at a small amplitude such that!'?

o > 0w (2.16)

i.e., perturbations oscillate faster than they interact (this can happen for example because
propagating wave packets do not stay together long enough to break up completely in
one encounter). In this case, one can do perturbation theory treating the nonlinear term
in (2.12) as small and expanding in the small parameter (wt, )" .

Because waves are fast compared to nonlinear evolution in this approximation, it is
possible to “quantise” them (as indeed it is already possible to do in QLT), i.e., to treat
a nonlinear turbulent state of the plasma as a cocktail consisting of both “true” particles
(ions and electrons) and “quasiparticles” representing electromagnetic excitations (§§7.9
and 9.1).

Note that because the nonlinear term couples perturbations at different k’s (scales),
this theory will lead to broad (power-law) fluctuation spectra.

We will not have sufficient time for this: it is a pity as the weak (or “wave”) turbulence
theory is quite an analytical tour de force—but it is a lot of work to do it properly! I will
provide an introduction to WT in §9. Classic texts on this are Kadomtsev (1965) (early
but lucid) and Zakharov et al. (1992) (mathematically definitive); a recent textbook

ONote that the nonlinear time scale is typically inversely proportional to the amplitude;
see (2.12).
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in Zakharov’s tradition is Nazarenko (2011), while the quasiparticle approach (with
Feynman diagrams and all that) can be learned from Tsytovich (1995) or Kingsep (2004).
Specifically on weak turbulence of Langmuir waves, there is a long, mushy review by
Musher et al. (1995).

2.4.4. Strong-Turbulence Theory

If perturbations manage to grow to a level at which
ol ~ w1l (2.17)

we are a facing strong turbulence. This is actually what mostly happens. Theory of such
regimes tends to be of phenomenological/scaling kind, often in the spirit of the classic
Kolmogorov (1941) theory of hydrodynamic turbulence.!! Here are two examples, not
necessarily the best or most relevant, just mine: Schekochihin et al. (2009, 2016). No one
really knows how to do much beyond this sort of approach—and not for lack of trying
(a recent but historically aware review is Krommes 2015). I will, nevertheless, try again
in §88 and 10.

3. Linear Theory: Plasma Waves, Landau Damping and Kinetic
Instablities

Enough idle chatter, let us calculate! In this section, we are concerned with the
linearised Vlasov—Poisson system, (2.13) and (2.9):

86fka . _ do . aan
5 + ik U(kaa—m—gokzk: o

4
or =15 Yt [0 (32)

For compactness of notation, I will drop both the species index a and the wave number
k in the subscripts, unless they are necessary for understanding.

We will discover that electrostatic perturbations in a plasma described by (3.1) and
(3.2) oscillate, can pass their energy to particles (damp) or even grow, sucking energy
from the particles. We will also discover that it is useful to know some complex analysis.

(3.1)

3.1. Initial- Value Problem

We shall follow Landau’s original paper (Landau 1946) in considering an initial-value
problem—because, as we will see, perturbations can be damped or grow, so it is not
appropriate to think of them over ¢ € [—o0, +00] (and—NB!!!—the damped perturbations
are not pure eignenmodes; see §4.3). So we look for df (v, t) satisfying (3.1) with the initial
condition

5f(v,t = 0) = g(v). (3.3)

A kind of exception is a very special case of strong Langmuir turbulence, which was extremely
popular in the 1970s and 80s. The founding documents on this are Zakharov (1972) and Kingsep
et al. (1973), but there is a huge and sophisticated literature that followed. There is, alas, no
particularly good review, but see Thornhill & ter Haar (1978), Rudakov & Tsytovich (1978),
Goldman (1984), Zakharov et al. (1985) and Robinson (1997) (I find the first of these the most
readable of the lot). I will give an introduction to this topic in §10. Another, distinct, intellectual
strand is the “quasinonlinear” approach usually associated with the name of Dupree (1972), but
really due to Kadomtsev & Pogutse (1970, 1971), of which I will attempt to make some sense
in §8 (based on Adkins 2018).



20 A. A. Schekochihin

(b)

FIGURE 3. Lev Landau (1908-1968), great Soviet physicist, quintessential theoretician, author
of the Book, cult figure. It is a minor feature of his scientific biography that he wrote the two
most important plasma-physics papers of all time (Landau 1936, 1946). He also got a Nobel
Prize (1962), but not for plasma physics. (a) Cartoon by A. A. Yuzefovich (from Landau &
Lifshitz 1976); the caption says “[And] Dau spake...” (...unto the students, also depicted).
(b) Landau’s mugshot from NKVD prison (1938), where he ended up for seditious talk and from
whence he was released in 1939 after Kapitsa’s personal appeal to Stalin.

It is, therefore, appropriate to use Laplace transform to solve (3.1):

5 (p) = /O T dte (e | (3.4)

It is a mathematical certainty that if there exists a real number ¢ > 0 such that
|0 (t)| < e" as t — oo, (3.5)

then the integral (3.4) exists (i.e., is finite) for all values of p such that Rep > o. The
inverse Laplace transform, giving us back our distribution function as a function of time,
is then

100+0 R
6 (1) = —- / dp e sf (p), (3.6)

2mi —i00+0

where the integral is along a straight line in the complex plane parallel to the imaginary
axis and intersecting the real axis at Rep = o (Fig. 4).

Since we expect to be able to recover our desired time-dependent function §f (v, t)
from its Laplace transform, it is worth knowing the latter. To find it, we Laplace-
transform (3.1):

Lh.s. = / dt e—Ptaaif = [e7P"of] +p/ dt e P'6f = —g + pdf,
0 0
ohy

. ; q ..
hs. = —ik-vof + —pik- 3.7
r.h.s ik -vdof + ik (3.7)
Equating these two expressions, we find the solution:
A 1 . q . afo
0 =—|i— k-— . 3.8
f(p) STk v [lmw(p) 50 Y (3.8)




Ozford MMathPhys Lectures: Plasma Kinetics and MHD 21
P
x L

7
// - QQP
here be Poles ﬁ 5?@)

only exists
here

—

:

Cowtour
+for iwarse
L Aravsform

FIGURE 4. Layout of the complex-p plane: 6f(p) is analytic for Rep > 0. At Rep < o, 6f(p)
may have singularities (poles).

The Laplace transform of the potential, $(p), itself depends on §f via (3.2):

¢(p) =/ODO dt e o(t) = %an /d3v5fa(p)

47 P 1 . Qo . a.f()a
- Bo—— i 2> k- . 3.9
k22ﬂ:‘1a/ vp+ik~v{zma@(p) v t 9o (3.9)
This is an algebraic equation for ¢(p). Collecting terms, we get
dng? . 3 1 Ofoa | . 4 / 3 Ja

1-— e d k- = — o [dPv—— (3.10

[ - kzmaZ Up+ik~'v ov #(p) k2§a:q vp—|—z'k-’v (3.10)
=c(p, k)

The prefactor in the left-hand side, which I denote €(p, k), is called the dielectric function,
because it encodes all the self-consistent charge-density perturbations that plasma sets
up in response to an electric field. This is going to be an important function, so let us
write it out beautifully:

2 .
w 4 1 6f0

k :1—§ —pa — [g? .22 3.11
(p. k) N A R T (3.11)

where the plasma frequency of species « is defined by [cf. (2.2)]

ATgana

The solution of (3.10) is

4m Ja
b = —— o d3 . ']‘
2P = ) Za e / Yotk v (3:.13)
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FIGURE 5. New contour for the inverse Laplace transform.

To calculate o(t), we need to inverse-Laplace-transform ¢: similarly to (3.6),

1 100+0
t)=— dpe?*@(p). 3.14
0= [ aperem (3.14)
How do we do this integral? Recall that df and, therefore, ¢ only exists (i.e., is finite)
for Rep > o, whereas at Rep < o, it can have singularities, i.e., poles—let us call them
p;, indexed by i. If we analytically continue ¢(p) everywhere to Rep < o except those
poles, the result must have the form

2) =S —S 1 Ap), (3.15)

P~ Di

where ¢; are some coeflicients (residues) and A(p) is the analytic part of the solution. The
integration contour in (3.14) can be shifted to Rep — —oo but with the proviso that it
cannot cross the poles, as shown in Fig. 5 (this is proven by making a closed loop out of
the old and the new contours, joining them at 4+ico, and noting that this loop encloses no
poles). Then the contributions to the integral from the vertical segments of the contour
are exponentially small,'? the contributions from the segments leading towards and away
from the poles cancel, and the contributions from the circles around the poles can, by
Cauchy’s formula, be expressed in terms of the poles and residues:

p(t) = Z cieP | (3.16)

Thus, in the long-time limit, perturbations of the potential will evolve o< ePit, where p;
are poles of $(p). In general, p; = —iw; + ;, where w; is a real frequency (giving wave-
like behaviour of perturbations), v; < 0 represents damping and v; > 0 growth of the
perturbations (instability).

2They are exponentially small in time as t — oo because the integrand of the inverse Laplace
transform (3.14) contains a factor of e®°?*, which decays faster than any of the “modes” in (3.16).
If ¢(p) does not grow too fast at large p, the integral along the vertical part of the contour may
also vanish at any finite ¢, but that is not guaranteed in general: indeed, looking ahead to the
explicit expression (3.27) for ¢(p), with the Landau prescription for analytic continuation to
Rep < 0 analogous to (3.20), we see that ¢(p) will contain a term o Go(ip/k), which can be
large at large Rep, e.g., if Go(v.) is a Maxwellian.
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Going back to (3.13), we realise that the poles of @(p) are zeros of the dielectric
function:

€(pi, k) =0 = pi=pi(k)=—iw;(k)+ (k). (3.17)

To find the wave frequencies w; and the damping/growth rates 7;, we must solve this
equation, which is called the plasma dispersion relation.

We are not particularly interested in what ¢;’s are, but they can be computed from the initial
conditions, also via (3.13). The reason we are not particularly interested is that if we set up
an initial perturbation with a given k and then wait long enough, only the fastest-growing or,
failing growth, the slowest-damped mode will survive, with all others having exponentially small
amplitudes. Thus, a typical outcome of the linear theory is ¢(t) oscillating at some frequency
and growing or decaying at some rate. Since this is a solution of a linear equation, the prefactor
in front of the exponential can be scaled arbitrarily and so does not matter.

3.2. Calculating the Dielectric Function: the “Landau Prescription”

In order to be able to solve €(p, k) = 0, we must learn how to calculate ¢(p, k) for any
given p and k. Before I wrote (3.15), I said that ¢, given by (3.13), had to be analytically
continued to the entire complex plane from the area where its analyticity was guaranteed
(Rep = o), but I did not explain how this was to be done. In order to do it, we must
learn how to calculate the velocity integral in (3.11)—if we want €(p, k) and, therefore,
its zeros p;—and also how to calculate the similar integral in (3.13) containing g, if we
also want the coefficients ¢; in (3.16).

First of all, let us turn these integrals into a 1D form. Given k, we can always choose
the z axis to be along k.'®> Then

1 9fo 1 d
3, + 4. 90 _ 1 0
/d vp+ik'vk v /dvzp+ikvzk@vz/dvx/dvyfo(vz,vy,vz)

= F(v.)

] +oo FI(UZ)

Assuming, reasonably, that F’(v.) is a nice (analytic) function everywhere, the integrand
in (3.18) has one pole, v, = ip/k. When Rep > o > 0, this pole is harmless because, in
the complex plane associated with the v, variable, it lies above the integration contour,
which is the real axis, v, € (—00,+00). We can think of analytically continuing the above
integral to Rep < o as moving the pole v, = ip/k down, towards and below the real
axis. As long as Rep > 0, this can be done with impunity, in the sense that the pole
stays above the integration contour, and so the analytic continuation is simply the same
integral (3.18), still along the real axis. However, if the pole moves so far down that
Rep = 0 or Rep < 0, we must deform the contour of integration in such a way as to keep
the pole always above it, as shown in Fig. 6. This is called the Landau prescription and
the contour thus deformed is called the Landau contour, Ct,.

Let us prove that this is indeed an analytic continuation, i.e., that the integral (3.18), adjusted
to be along Cf1,, is analytic for all values of p. Let us cut the Landau contour at v, = £R and
close it in the upper half-plane with a semicircle Cg of radius R such that R > o/k (Fig. 7).
Then, with integration running along the truncated Ct, and counterclockwise along Cr, we get,

!3NB: This means that in what follows, k > 0 by definition.
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FIGURE 6. The Landau prescription for the contour of integration in (3.18).
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FIGURE 7. Proof of Landau’s prescription [see (3.19)].
by Cauchy’s formula,
’ ’ .
dv. M + dv. M =2mi F’ (@> . (3.19)
o v, —ip/k Cn v, —ip/k k

Since analyticity is guaranteed for Rep > o, the integral along Cr is analytic. The right-hand
side is also analytic, by assumption. Therefore, the integral along Cf, is analytic—this is the
integral along the Landau contour if we take R — oo.

With the Landau prescription, our integral is calculated as follows:

+oo F!
/ dvzﬂ if Rep >0,
oo v, —ip/k

F'(v.) oo Flv,) . ipy .
dv, — V=) _ dv, V) (P —0, | (320
/CL v pR——r P/_OO v vz—ip/k+m (k if Rep=0 (3.20)

+oo yad .
/ do, W) o (P Rep < 0,
e v, —ip/k k

where the integrals are again over the real axis and the imaginary bits come from the
contour making a half (when Rep = 0) or a full (when Rep < 0) circle around the pole.
In the case of Rep = 0, or ip = w, the integral along the real axis is formally divergent
and so we take its principal value, defined as

400 i w/k—e 400 ’
7?/ dv, 02 gy / +/ dv, =) (3.21)
—o0 Uz — LU/]{? €0 —o0 w/k+e Uz — W/k
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The difference between (3.21) and the usual Lebesgue definition of an integral is that the latter

would be
+oo F/ w/k—eq “+oo F/
/ do. @) gy / + lim / dv, F0=)_ (3.22)
—oo Vz — w/k e1—0 — o0 e2—0 w/k+eg Vz — w/k

and this, with, in general, €1 # €2, diverges logarithmically, whereas in (3.21), the divergences
neatly cancel.
The Rep = 0 case in (3.20),

F'(v,) Hee F'(v,) W
2 ——— = z - 741 F - ) -2
CLdU F——y P[m dv vz—w//ﬂ+m (k) (3.23)

which tends to be of most use in analytical theory, is a particular instance of Plemelj’s formula:
for a real ¢ and a well-behaved function f (no poles on or near the real axis),

N (C) e f(@)
also sometimes written as
. 1 )
81—1>r£0$—C:F’L'E —Px_g:l:wré(xfg"), (3.25)

Finally, armed with Landau’s prescription, we are ready to calculate. The dielectric
function (3.11) becomes

wl, 1 F! (v,)
k)=1-— P - dzaiz 2
Wk =1-3 % ol (3.26)

and, analogously, our Laplace-transformed solution (3.13) becomes
R 47T’L Ga (vz)
S _ o dv, ——22 3.27
o) =~y 2 /C e (3.27)
where G, (v.) = [dv, [ dvy ga(ve, vy, v2).

3.3. Solving the Dispersion Relation: Slow-Damping/Growth Limit
A particularly analytically solvable and physically interesting case is one in which, for
p=—iw+7y,v<w (or, if w=0, v < kvtha), i.€., the case of slow damping or growth.
In this limit, the dispersion relation (3.17) is

e(p, k) =~ e(—iw, k) + iy % e(—iw, k) = 0. (3.28)

Setting the imaginary part of (3.28) to zero gives us the growth/damping rate in terms
of the real frequency:

ow

v = —Ime(—iw, k) {8 Ree(—iw,k)] - . (3.29)

Setting the real part of (3.28) to zero gives the equation for the real frequency:

| Ree(—iw, k) = 0]. (3.30)
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Thus, we now only need ¢(p, k) with p = —iw. Using (3.23), we get

Ree=1— P/ _w/k (3.31)
_ @l (@
Ime = S Fa<k) . (3.32)

Let us consider a two-species plasma, consisting of electrons and a single species of
ions. There will be two interesting limits:

e “High-frequency” electron waves: w > kvihe, where vghe = /2T /me is the “thermal
speed” of the electrons;'* this limit will give us Langmuir waves (§3.4), slowly damped
or growing (§3.5).

o “Low-frequency” ion waves: a particularly tractable limit will be that of “hot”
electrons and “cold” ions, viz., kvtne > w >> kvgn,, where vy = /275 /m; is the “thermal
speed” of the ions; this limit will give us the sound (“ion-acoustic waves”; §3.8), which
also can be damped or growing (§3.9).

3.4. Langmuir Waves

Consider the limit
w
E > Vthe, (333)
i.e., the phase velocity of the waves is much greater than the typical velocity of a particle
from the “thermal bulk” of the distribution. This means that in (3.31), we can expand in
v, ~ VUghe being small compared to w/k (higher values of v, are cut off by the equilibrium
distribution function). Note that w > kvgpe also implies w >> kv, because

Vthi T; me

=4/ === 1 3.34
Uthe Te m; < ( )

as long as T /T, is not huge.'® Thus, (3.31) becomes
kvz kv, 2 kv, 3
1+ + + +...
w w

w?
:1—|—Z ];Zj {na/dsz’ v,) /dvz (vy)

Ree—1+zﬂ——P/dsz’ (vs)

k* 1 k3 1 5
_2Ea dv, v, Fy(vy;) STE dvzsza(vz)—i—..l
=0 :v?ha/2
wga 3k2vtha
:1726‘)2 Lo+, (3.35)

“This is a standard well-defined quantity for a Maxwellian equilibrium distribution
F.(vz) = (ne//T Vine) exp(—v2 /v3,.), but if we wish to consider a non-Maxwellian F., let v, be
a typical speed characterising the width of the equilibrium distribution, defined by, e.g., (3.36).

5For hydrogen plasma, \/m;/m. ~ 42, the answer to the Ultimate Question of Life, Universe
and Everything (Adams 1979).
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where we have integrated by parts everywhere, assumed that there are no mean flows,
(v,) =0, and, in the last term, used

v2
(v?) = —gm, (3.36)
which is indeed the case for a Maxwellian F, or, if F}, is not a Maxwellian, can be viewed
as the definition of vip.
The ion contribution to (3.35) is small because
ng Zme

=2 «1, (3.37)

2 A
Whe m;

so ions do not participate in this dynamics at all. Therefore, to lowest order, the dispersion
relation Re e = 0 becomes

2 2
Wpe o o2 dmen,
1-— 2= 0 = |w =w,= | (3.38)

the Tonks & Langmuir (1929) dispersion relation for what is known as Langmuir, or
plasma, oscillations. This is the formal derivation of the result that we already had, on
physical grounds, in §2.1.

We can do a little better if we retain the (small) k-dependent term in (3.35):

w? 3 k202
Ree~1— w"; (1 + §T5he > =0 = |wruwl(1+3k),)], (3.39)
N——
use
w? ~wl,

where Ap, = vthe/\/iwpe = /T./4me?n, is the “electron Debye length” [cf. (1.6)].
Equation (3.39) is the Bohm & Gross (1949a) dispersion relation, describing an upgrade
of the Langmuir oscillations to dispersive Langmuir waves, which have a non-zero group
velocity (this effect is due to electron pressure: see Exercise 3.1).

Note that all this is only valid for w > kvyne, which we now see is equivalent to

kApe < 1. (3.40)

Exercise 3.1. Langmuir hydrodynamics.'® Starting from the linearised kinetic equation
for electrons and ignoring perturbations of the ion distribution function completely, work out
the fluid equations for electrons (i.e., the evolution equations for the electron density n. and
velocity u.) and show that you can recover the Langmuir waves (3.39) if you assume that
electrons behave as a 1D adiabatic fluid (i.e., have the equation of state pen;” = const with
~ = 3). You can prove that they indeed do this by calculating their density and pressure directly
from the Landau solution for the perturbed distribution function (see §§4.3 and 4.6), ignoring
resonant particles. The “hydrodynamic” description of Langmuir waves will reappear in §10.

3.5. Landau Damping and Kinetic Instabilities

Now let us calculate the damping rate of Langmuir waves using (3.29), (3.32)
and (3.39):

ORee 2w W O L () e

Ow w3’ k2 n, °© 2k2n, ¢

6This is based on the 2017 exam question.
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(a) wF'(w/k) < 0: Landau damping (b) wF'(w/k) > 0: instability

FIGURE 8. The Landau resonance (particle velocities equalling phase speed of the wave v, = w/k)
leads to damping of the wave if more particles lag just behind than overtake the wave and to
instability in the opposite case.

where w is given by (3.39). Provided wF’(w/k) < 0 (as would be the case, e.g., for
any distribution monotonically decreasing with |v,|; see Fig. 8a), v < 0 and so this is
indeed a damping rate, the celebrated Landau damping (Landau 1946; it was confirmed
experimentally two decades later, by Malmberg & Wharton 1964).

The same theory also describes a class of kinetic instabilities: if wF’'(w/k) > 0, then
~v > 0, so perturbations grow exponentially with time. An iconic example is the bump-
on-tail instability (Fig. 8b), which arises when a high-energy (v, > vip.) electron beam
is injected into a plasma'” and which we will study in great detail in §7.

We see that the damping or growth of plasma waves occurs via their interaction with
the particles whose velocities coincide with the phase velocity of the wave (“Landau
resonance”). Because such particles are moving in phase with the wave, its electric field
is stationary in their reference frame and so can do work on these particles, giving its
energy to them (damping) or receiving energy from them (instability). In contrast, other,
out-of-phase, particles experience no mean energy change over time because the field
that they “see” is oscillating. It turns out (§3.6) that the process works in the spirit of
socialist redistrbution: the particles slightly lagging behind the wave will, on average,
receive energy from it, damping the wave, whereas those overtaking the wave will have
some of their energy taken away, amplifying the wave. The condition wF’(w/k) < 0
corresponds to the stragglers being more numerous than the strivers, leading to net
damping; wF’(w/k) > 0 implies the opposite, leading to an instability (which then leads
to flattening of the distribution; see §7).

Let us note again that these results are quantitatively valid only in the limit (3.33),
or, equivalently, (3.40). It makes sense that damping should be slow (y < w) in the
limit where the waves propagate much faster than the majority of the electrons (w/k >
vthe) and so can interact only with a small number of particularly fast particles (for a
Maxwellian equilibrium distribution, it is an exponentially small number ~ e’/ k2”t2he).
If, on the other hand, w/k ~ vipe, the waves interact with the majority population and
the damping should be strong: a priori, we might expect v ~ kvgpe-

Landau damping became a cause célebre in the mathematics community and in the wider science

"Here we are dealing with the case of a “warm beam” (meaning that it has a finite width). Tt
turns out that there exists also another instability, leading to growth of perturbations with w/k
to the right of the bump’s peak, due to a different, “fluid” kind of resonance and possible even
for “cold beams” (i.e., beams of particles that all have the same velocity): see §3.7.
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FIGURE 9. The function x(vo) defined in (3.49).

world with the award of the Fields Medal in 2010 to Cédric Villani, who proved (with C. Mouhot)
that, basically, Landau’s solution of the linearised Vlasov equation survived as a solution of the
full nonlinear Vlasov equation for small enough and regular enough initial perturbations: see a
“popular” account of this by Villani (2014). The regularity restriction is apparently important
and the result can break down in interesting ways: see Bedrossian (2016). The culprit is plasma
echo, of which more will be said in §§6.2 and 8.4 (without claim to mathematical rigour; see
also Schekochihin et al. 2016 and Adkins & Schekochihin 2018).

Exercise 3.2. Stability of isotropic distributions. Prove that if foe (vs, vy, v:) = foe(v), i.€.,
if it is a 3D-isotropic distribution, monotonic or otherwise, the Langmuir waves at kAp. < 1 are
always damped (this is solved in Lifshitz & Pitaevskii 1981; the statement of stability of isotropic
distributions is in fact valid much more generally than just for long-wavelength Langmuir waves,
as we will see in Exercise 5.2).

3.6. Physical Picture of Landau Damping

The following simple argument (Lifshitz & Pitaevskii 1981) illustrates the physical mechanism
of Landau damping.
Consider an electron moving along the z axis, subject to a wave-like electric field:

dz

a = Vg, (3.42)
dv. e e et

T m E(z,t) = o Eo cos(wt — kz)e"™". (3.43)

We have given the electric field a slow time dependence, E o e*, but we will later take ¢ — +0—
this describes the field switching on infinitely slowly from ¢t = —oco. We assume that the amplitude
Ey of the electric field is so small that it changes the electron’s trajectory only a little over several
wave periods. Then we can solve the equations of motion perturbatively.

The lowest-order (Ep = 0) solution is
v:(t) = vo = const, z(t) = vot. (3.44)
In the next order, we let
vy (t) = vo + dv.(t), z(t) = vot + 62(t). (3.45)

Equation (3.43) becomes

dév, e e eFy [i(w—kvg)+elt
= —— FE(z(t),t) ~ — FE(vot,t) = — 0 . A
2 = LRG0 ~ = Bt 1) = — 0 Ree (3.46)
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Integrating this gives

Ey, [t o /
5vz(t)——fn°/ dt’ Re el'(@—kvo)telt
e 0
GEQ e[i(w—kvo)+s]t -1

Me © i(w—kvo) + ¢

_ el ee! cos[(w — kvo)t] — & + (w — kvo)e! sin[(w — ko)t (3.47)
T me (w — kvo)? + €2 ' '

Integrating again, we get

0z(t) = /Ot dt’ sv. (t)

¢ [i(w—kvo)+elt’ _
_ _ekp / 4t Re 1
0

Me i(w—kvo) +¢
el { o eltw—kvo)telt _ B et }
me [i(w— kvo) +¢]°  (w—kuvg)? + &2

_ _6E0{ [€? — (w — kvo)?] {e* cos[(w — kvo)t] — 1} + 2e(w — kvo)e" sin[(w — kvo)t]
Me [(w — l'ﬂ)())2 + 62}2
et
 (w — kuo)? + 2 } (3.48)

The work done by the field on the electron per unit time, averaged over time, is the power gained
by the electron:

6P (vo) = —e (E(z(t), t)v:(t))

~ —e < {E(Uot, t) + 62(t) %—f(vot, t)] [vo + dv. (t)]>

= —eEye’ <v0 cos[(w — kvo)t] + dv. () cos[(w — kvo)t] + vodz(t)k sin[(w — kvo )]

vanishes only cos term only sin term
under from (3.47) from (3.48)
averaging survives survives
averaging averaging
_ e°Ep 2t { € 2kvoe(w — kvo) }
2me (w—kvo)2 +€2  [(w— kw2 +e2)?
2 12
e“Ey oo d EVo
_ “ . 3.49
2Me € dvo (w — kvo)? + €2 ( )
—_— —
= x(vo)

We see (Fig. 9) that

—if the electron is lagging behind the wave, vo < w/k, then x'(vo) > 0 = JP(vo) > 0, so
energy goes from the field to the electron (the wave is damped);

—if the electron is overtaking the wave, vo > w/k, then x'(vo) <0 = JP(vo) < 0, so energy
goes from the electron to the field (the wave is amplified).

Now remember that we have a whole distribution of these electrons, F'(v.). So the total power
per unit volume going into (or out of) them is

e2F2e?t /
P= [ dv. F(v:)dP(v:) = — = [ dv: F(v:)x'(v2)
Me
- 2 B2t

= 7/dvz F'(v2)x(vz). (3.50)

2Me



Ozford MMathPhys Lectures: Plasma Kinetics and MHD 31

A (Vs
beam,
<12
Vike
© u V2

FI1GURE 10. Electron distribution with a cold beam; see (3.54).

Noticing that, by Plemelj’s formula (3.25), in the limit € — 40,

v v 1 1 w w
= v W . f5(z—7), 3.51
x(v:) (w—kv,)? + €2 2 (kvszfis kv27w+is)_>7rk2 v k ( )

we conclude

e2E(2) )
P =g (E) . (3.52)

As in §3.5, we find damping if wF’(w/k) < 0 and instability if wF’(w/k) > 0.

Thus, around the wave-particle resonance v, = w/k, the particles just lagging behind the
wave receive energy from the wave and those just overtaking it give up energy to it. Therefore,
qualitatively, damping occurs if the former particles are more numerous than the latter. We see
that Landau’s mathematics in §§3.1-3.5 led us to a result that makes physical sense.

3.7. Hot and Cold Beams

Let us return to the unstable situation, when a high-energy beam produces a bump on the
tail of the distribution function and thus electrostatic perturbations can suck energy out of the
beam and grow in the region of wave numbers where vo < w/k < up. Here vg is the point of the
minimum of the distribution in Fig. 8(b) and uy is the point of the maximum of the bump, which
is the velocity of the beam; we are assuming that up > vihe. In view of (3.41), the instability
will have a greater growth rate if the bump’s slope is steeper, i.e., if the beam is colder (narrower
in v, space).

Imagine modelling the beam with a little Maxwellian distribution with mean velocity wup,
tucked onto the bulk distribution:'®

2

Ne — N 02 b (v2 — up)?
Fe(v,) = — - —_——, 3.53
(v-) Ve ( Ufhe) T e P { vp ] (3.53)

where ny, is the density of the beam, vy is its width, and so Ty, = mevﬁ/Z is its “temperature”,
just like T. = mevd,./2 is the temperature of the thermal bulk. A colder beam will have less
of a thermal spread around wup. It turns out that if the width of the beam is sufficiently small,
another instability appears, whose origin is hydrodynamic rather than kinetic. In the interest of
having a full picture, let us work it out.

Consider a very simple limiting case of the distribution (3.53): let v1, — 0 and np, < ne. Then
(Fig. 10)

Fe(v.) = Fm(vz) + nwd(ve — up), (3.54)

where Fy is the bulk Maxwellian from (3.53) (with density & n., neglecting ny, in comparison).
Let us substitute the distribution (3.54) into the dielectric function (3.26), seek solutions with
p/k > Vine, expand the part containing Fy in the same way as we did in §3.4,"° neglect the

¥The fact that we are working in 1D means that we are restricting our consideration to
perturbations whose wave numbers k are parallel to the beam’s velocity. In general, allowing
transverse wave numbers brings into play the transverse (electromagnetic) part of the dielectric
tensor (see Q2). However, for non-relativistic beams, the fastest-growing modes will still be the
longitudinal, electrostatic ones (see, e.g., Alexandrov et al. 1984, §32).

9We can treat the Landau contour as simply running along the real axis because we are
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FIGURE 11. Sketch of the growth rate of the hydrodynamic and kinetic beam instabilities: see
(3.57) for k < wpe/un, (3.58) for k = wpe/un, and (3.41) for wpe/ub < k < wpe/vo, where v is
the point of the minimum of the distribution in Fig. 8(b) and wuy is the point of the maximum
of the bump.

ion contribution for the same reason as we did there, and deal with the term in the dielectric
function containing &’(v, — up) by integrating by parts. The resulting dispersion relation is
wge Ny wge

~1 - =0. 3.55
It T (kup — ip)? (3.55)

Since ny, < ne, the last term can only matter for those perturbations that are close to resonance
with the beam (this is called the Cherenkov resonance):

p=—ikup +7, < kup. (3.56)
This turns (3.55) into

2 2 —1/2
Wpe Np Wpe N 1 1

i) =0 = =4,/ =2 — . 3.57

k2u? + Ne y2 i V ne (k2u% wge) ( )

The expression under the square root is positive and so there is indeed a growing mode only if
k < wpe/up. This is in contrast to the case of a hot (or warm) beam in §3.5: there, having a kinetic
instability required wF.(w/k) > 0, which was only possible at k > wpe/u1, (the phase speed of
the perturbations had to be to the left of the bump’s maximum). The new instability that
we have found—the hydrodynamic beam instability—has the largest growth rate at kup = wpe,
i.e., when the beam and the plasma oscillations are in resonance, in which case, to resolve the
singularity, we need to retain v in the second term in (3.55). Doing so and expanding in ~,
we get

~1 wge N wf,e 2y | mp wge -0 . +V3+i np \'°
e~ 1= N2 T a2 t = = |7= 2 o 2 Wpe
(wpe + 1) e 7Y Wpe  TMe 7 e

(3.58)
The unstable root (Rey > 0) is the interesting one. The growth rate of the combined beam
instability, hydrodynamic and kinetic, is sketched in Fig. 11.

Exercise 3.3. This instability is called “hydrodynamic” because it can be derived from fluid
equations (cf. Exercise 3.1) describing cold electrons (vihe = 0) and a cold beam (v, = 0).
Convince yourself that this is the case.

Exercise 3.4. Using the model distribution (3.53), work out the conditions on v, and ny that
must be satisfied in order for our derivation of the hydrodynamic beam instability to be valid,
i.e., for (3.55) to be a good approximation to the true dispersion relation. What is the effect of

expecting to find a solution with Rep > 0 [see (3.20)], for reasons independent of the Landau
resonance.
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(a) Cold streams: see (3.59) (b) Hot streams: see (5.16) and Q4

FIGURE 12. Two streams.

finite v, on the hydrodynamic instability? Sketch the growth rate of unstable perturbations as
a function of k, taking into account both the hydrodynamic instability and the kinetic one, as
well as the Landau damping.

Exercise 3.5. Two-stream instability. This is a popular instability®® that arises, e.g., in
a situation where the plasma consists of two cold counterstreams of electrons propagating
against a quasineutrality-enforcing background of effectively immobile ions (Fig. 12a). Model
the corresponding electron distribution by

Ne
2

and solve the resulting dispersion relation (where the ion terms can be neglected for the
same reason as in §3.4). Find the wave number at which perturbations grow fastest and the
corresponding growth rate. Find also the maximum wave number at which perturbations can
grow. If you want to know what happens when the two streams are warm (have a finite thermal
spread vp; Fig. 12b), a nice fully tractable quantitative model of such a situation is the double-
Lorentzian distribution (5.16). The dispersion relation for it can be solved exactly: this is done
in Q4. You will again find a hydrodynamic instability, but is there also a kinetic one (due to
Landau resonance)? It is an interesting and non-trivial question why not.

Fe(v:) = — [6(v: — ub) + 0(vs + up)] (3.59)

3.8. Ion-Acoustic Waves

Let us now see what happens at lower frequencies,

Vihe > % > Vi, (3.60)

i.e., when the waves propagate slower than the bulk of the electron distribution but
faster than the bulk of the ion one (Fig. 13). This is another regime in which we might
expect to find weakly damped waves: they are out of phase with the majority of the ions,
so F!(w/k) might be small because F;(w/k) is small, while as far as the electrons are
concerned, the phase speed of the waves is deep in the core of the distribution, perhaps
close to its maximum at v, = 0 (if that is where its maximum is) and so F)(w/k) might
turn out to be small because F,(v,) changes slowly in that region.

To make this more specific, let us consider Maxwellian electrons:

n (vy — Ue

Fo(v.) = m exp [—%)T , (3.61)

20Tt was discovered by engineers (Haeff 1949; Pierce & Hebenstreit 1949) and quickly adopted
by physicists (Bohm & Gross 1949b). Buneman (1958) realised that a case with an electron and
an ion stream (i.e., with plasma carrying a current) is unstable in an analogous way. The kinetic
version of the latter situation is the ion-acoustic instability derived in §3.9. In §5.1.3, we will
discuss in a more general way the stability of distributions featuring streams.
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where we are, in general, allowing the electrons to have a mean flow (current). We will
assume that u, < vipe but allow u. ~ w/k. We can anticipate that this will give us an
interesting new effect. Indeed,

2(v, — ue)

2
Uthe

Fl(v,) = — F.(v,). (3.62)
For resonant particles, v, = w/k, the prefactor will be small, so we can hope for v < w,
as anticipated above, but note that its sign will depend on the relative size of u, and
w/k and so we might (we willl) get an instability (§3.9).

But let us not get ahead of ourselves: we must first calculate the real frequency w(k)
of these waves, from (3.30) and (3.31):

w2, 1 F!(v,)
Ree=1- 2 — dv, —~22 —
e k2 n, P/ v v, —w/k

k v, —w/k

w2 1 F!
bi P/ v, L) _ (3.63)
n;
2

Wpi
~ (1+3K°2D)

The last (ion) term in this equation can be expanded in kv,/w < 1 in exactly the same
way as it was done in (3.35). The expansion is valid provided

kA < 1, (3.64)

and we will retain only the lowest-order term, dropping the k:2)\2Di correction. The second
(electron) term in (3.63) is subject to the opposite limit, v, > w/k, so, using (3.62),

FIU ) Qw2 1
pei z ~ Fe )~ — pe _

Uthe
(3 65)
where we have neglected u, < v, because this integral is over the thermal bulk of the
electron distribution.
With all these approximations, (3.63) becomes

1 an‘
Ree=1+ k2)\2 -2 0. (3.66)
The dispersion relation is then
w2, k202
2= T = S (3.67)
1T+ 1/k20;, 14+ k203,
where
ZT,
s = WpiADe = . 3.68
Cs = WpiAD -~ ( )

is the sound speed, called that because, if we take kAp. < 1, (3.67) describes a wave that
is very obviously a sound, or ion-acoustic, wave:

G=ta) )

The phase speed of this wave is the sound speed, w/k = ¢s. That the expression (3.68)
for ¢s combines electron temperature and ion mass is a hint as to the underlying physics
of sound propagation in plasma: ions provide the inertia, electrons the pressure (see
Exercise 3.6).
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FIGURE 13. Ion-acoustic resonance: damping (cs > ue) or instability (¢s < u.). Ion Landau
damping is weak because ¢s >> vshi, S0 in the tail of F;(v.); electron damping/instability is also
weak because ue, ¢s K Uthe, S0 close to the peak Fe(v.).

We can now check under what circumstances the condition (3.60) is indeed satisfied:

S Zm, S 7T,
R >1, (3.70)
Vthe m; Vthi T;

with the latter condition requiring that the ions should be colder than the electrons.

Exercise 3.6. Hydrodynamics of sound waves. Starting from the linearised kinetic equa-
tions for ions and electrons, work out the fluid equations for the plasma (i.e., the evolution
equations for its mass density and mass flow velocity). Assuming m; > me and T; < Te, show
that the sound waves (3.69) with ¢s given by (3.68) are recovered if electrons have the equation
of state of an isothermal fluid. Why should this be the case physically? Why is the equation of
state for electrons different in a sound wave than in a Langmuir wave (see Exercise 3.1)7 We
will revisit ion hydrodynamics in §10.

3.9. Damping of Ion-Acoustic Waves and Ion-Acoustic Instability

Are ion acoustic waves damped? Can they grow? We have a standard protocol for
answering this question: calculate Re e and Im e and substitute into (3.29). Using (3.66)
and (3.32), we find

ORee 2wl wlo wy Wi w
oo = o me=En P(E) R G (371)

The two terms in Ime represent the interaction between the waves and, respectively,
electrons and ions. The ion term is small both on account of wp; < wpe and, assuming
Maxwellian ions, of the exponential smallness of F;(w/k) o exp|[—(w/kvin;)?]. We are
then left with

3

Ime w m; [w
" e e~ VT e Zmy (5 ) (8:72)
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where we have used (3.62). In the long-wavelength limit, kAp. < 1, we have w = tkc;,
and so, for the “4+” mode,

T Me

v =— e k(cs —ue) |- (3.73)

If the electron flow is subsonic, u. < cs, this describes the Landau damping of ion acoustic
waves on hot electrons. If, on the other hand, the electron flow is supersonic, the sign
of v reverses?! and we discover the ion-acoustic instability: excitation of ion acoustic
waves by a fast electron current. The instability belongs to the same general class as,
e.g., the bump-on-tail instability (§3.5) in that it involves waves sucking energy from
particles, but the new conceptual feature here is that such energy conversion can result
from a collaboration between different particle species (electrons supplying the energy,
ions carrying the wave).

There is a host of related instabilities involving various combinations of electron and
ion beams, currents, streams and counterstreams—excellent treatments of them can be
found in the textbooks by Krall & Trivelpiece (1973) and by Alexandrov et al. (1984) or
in the review by Davidson (1983). I shall return to this topic in §5.1.3.

Exercise 3.7. Damping of sound waves on ions.?? Find the ion contribution to the damping
of ion-acoustic waves. Under what conditions does it become comparable to, or larger than, the
electron contribution?

3.10. Ion Langmuir Waves
Note that since

E _ UtheWpi _ Z,Te7 (374)

ADi UthiWpe T;
the condition (3.64) need not entail kAp. < 1 in the limit of cold ions [see (3.70)]—in this
case, the size of the Debye sphere (1.6) is set by the ions, rather than by the electrons,
and so we can have perfectly macroscopic (in the language of §1.4) perturbations on
scales both larger and smaller than Ap.. At larger scales, we have found sound waves
(3.69). At smaller scales, kAp. > 1, the dispersion relation (3.67) gives us ion Langmuir
oscillations:

4 Z%e%n;
2 2
which are analogous to the electron Langmuir oscillations (3.38) and, like them, turn into
dispersive ion Langmuir waves if the small k? A3 correction in (3.63) is retained, leading

to the Bohm—Gross dispersion relation (3.39), but with ion quantities this time.

Exercise 3.8. Derive the dispersion relation for ion Langmuir waves. Investigate their damp-
ing/instability.

3.11. Summary of Electrostatic (Longitudinal) Plasma Waves

We have achieved what turns out to be a basically complete characterisation of
electrostatic (also known as “longitudinal”, in the sense that k || E) waves in an
unmagnetised plasma. These are summarised in Fig. 14. In the limit of short wavelengths,

21Recall that k > 0 by the choice of the z axis.

22The 2016 exam question was loosely based on this.
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FIGURE 14. Electrostatic (longitudinal) plasma waves.

kApe > 1 and kAp; > 1, the electron and ion branches, respectively, becomes dispersive,
their damping rates increase and eventually stop being small. This corresponds to waves
having phase speeds that are comparable to the speeds of the particles in the thermal
bulk of their distributions, so a great number of particles are available to have Landau
resonance with the waves and absorb their energy—the damping becomes strong.

Note that if the cold-ion condition T; < T, is not satisfied, the sound speed is
comparable to the ion thermal speed c¢g ~ v¢p;, and so the ion-acoustic waves are strongly
damped at all wave numbers—it is well-nigh impossible to propagate sound through a
collisionless hot plasma (no one will hear you scream)!

3.12. Plasma Dispersion Function: Putting Linear Theory on Industrial Basis

Clearly, we have entered the realm of practical calculation—it is now easy to imagine an
industry of solving the plasma dispersion relation

1 @7 Folz(UZ) _
=1 Z 5 na/ dv. F_@,p/kfo (3.76)

and similar dispersion relations arising from, e.g., considering electromagnetic perturbations (see
Q2), magnetised plasmas (see Parra 2018b), different equilibria Fi, (see Q3), etc.

A Maxwellian equilibrium is obviously an extremely important special case because that is,
after all, the distribution towards which plasma is pushed by collisions on long time scales:

Na —02 /02 Na —02 /02

V)= —F—5¢€ thee = [ (vy) = e #/ the 3.77

foa( ) (Tm}tQha)3/2 O‘( Z) ﬁvtha ( )

For this case, we would like to introduce a new “special function” that would incorporate the

Landau prescription for calculating the velocity integral in (3.76) and that we could in some
sense “tabulate” once and for all.?*

%31n the olden days, one would literally tabulate it (Fried & Conte 1961). In the 21st century,
we could just teach a computer to compute it [see (3.86)] and make an app.
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Taking F, to be a Maxwellian and letting u = v, /vtha and (o = ip/kvtha, we can rewrite the
velocity integral in (3.76) as follows

1 F/ ('Uz) 2 —u2 2
oo ] dve e = du > = ———[1+¢Z(a)], 3.78
Na Jey, v, —ip/k N o u—Ca thha [ CaZ(Ca)l ( )

where the plasma dispersion function is defined to be

2(0) = % / du% . (3.79)

In these terms, the plasma dispersion relation (3.76) becomes

1+Co¢ a
=1+ Z k2>\2D =0]. (3.80)

Note that if the Maxwellian distribution (3.77) has a mean flow, as it did, e.g., in (3.61), this
amounts to a shift by some mean velocity u, and all one needs to do to adjust the above results
is to shift the argument of Z accordingly:

Co = Ca — (3.81)
vtha
3.12.1. Some Properties of Z(()
It is not hard to see that
2
1 _20 1 2 ue “
Z'(Q)=——F%= [ due™ — =——[d =—2[1+¢Z(Q)]. 3.82
=gz [ e gt =~ [ = 2 (2] (3.82)
Let us treat this identity as a differential equation: the integrating factor is eCQ, SO
<2 C t2
" 2(¢) = -2 / dt e + 2(0). (3.83)
0
We know the boundary condition at ¢ = 0 from (3.23): for real ¢,
i/du c —LP/Mdu L 7 = Z(0)=iva (3.84)
Nz u— VT ) u—C o ‘ ’
N— —
=0for (=0
because
integrand is
odd

Using this in (3.83) and changing the integration variable ¢t = —ix, we find

i¢ i¢
Z(¢) = (i\/ir+ 22’/ dxe*“ﬂ) = 2ie*<2/ dze ™. (3.85)
0 —o0
This turns out to be a uniformly valid expression for Z({): our function is simply a complex erf!
Here is a MATHEMATICA script for calculating it:
Z[zeta ] := I Sqrt[Pi] Exp[—zeta®](1 + I Erfi[zeta)). (3.86)
You can use this to code up (3.80) and explore, e.g., the strongly damped solutions ({ ~ 1,
v~ w).

3.12.2. Asymptotics of Z(C)

If you believe in preserving the ancient art of asymptotic theory, you will find most useful
(as, effectively, we did in §§3.4-3.9) various limiting forms of Z({). At small argument || < 1,
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the Taylor series is

Ve (1.2 A 8¢
Z() =ivme 2¢ (1 3 + 5 105—!—... . (3.87)
At large argument, |¢| > 1, |[Re(| > |Im (], the asymptotic series is
e L 1,3, 1
Z2(¢) = ivme C(1+2<2+4<4+8C6+”' . (3.88)

All the results (for a Maxwellian equilibrium) that I derived in §§3.4-3.10 can be readily obtained
from (3.80) by using the above limiting cases (see Q1). It is, indeed, a general practical strategy
for studying this and similar plasma dispersion relations to look for solutions in the limits
Ca — 0 or (o — 00, then check under what physical conditions the solutions thus obtained are
valid (i.e., that they indeed satisfy |[Ca| << 1 or |(a] > 1, |Re(| > [Im(]), and then fill in the
non-asymptotic blanks in the same way that an experienced hunter espying antlers sticking out
above the shrubbery can reconstruct, in contour outline, the rest of the hiding deer.

Exercise 3.9. Work out the Taylor series (3.87). A useful step might be to prove this interesting
formula (which also turns out to be handy in other calculations; see, e.g., Q8):

2

dm"z _ (-1n)™ du Hp,(u)e™™
acm  vr Jey u—=¢
where H,,(u) are Hermite polynomials [defined in (10.70)].

(3.89)

Exercise 3.10. Work out the asymptotic series (3.88) using the Landau prescription (3.20) and
expanding the principal-value integral similarly to the way it was done in (3.35). Work out also
(or look up; e.g., Fried & Conte 1961) other asymptotic forms of Z(¢), relaxing the condition
[Re (] > [Im(].

3.13. Alternatives to Landau’s Formalism

Landau’s method of working out waves and damping in collisionless plasmas has a way eliciting
a degree of dissatisfaction in the minds of some mathematically inclined people, and/or motivates
a search for alternatives. Perhaps the earliest and best known such alternative is the formalism
due to van Kampen. His objective was more mathematical rigour—but even if this is of limited
appeal to you, the book by van Kampen & Felderhof (1967) is still a good read and a good
chance to question and re-examine your understanding of how it all works.

Blithely skipping half a century of literature and focussing on the present, let me mention
a recent paper by Heninger & Morrison (2018), which, following up on Morrison (1994, 2000),
recasts van Kampen’s scheme in terms of using a clever alternative transform, instead of the
Laplace transform, to solve Landau’s initial-value problem.

You might find further enlightenment in another very recent paper, by Ramos & White (2018),
where the Landau problem is recast as a proper eigenvalue problem—and it is shown, amongst
other mathematical delights, that if one fiddles cleverly with initial conditions, one can obtain
solutions that do not decay at the Landau rate and, in fact, can have any time evolution that
one cares to specify!

4. Energy, Entropy, Free Energy, Heating, Irreversibility and Phase
Mixing
While we are done with the “calculational” part of linear theory (calculating the rates
at which field perturbations oscillate, damp or grow), we are not yet done with the
“conceptual” part: what exactly is going on, mathematically and physically? The plan
of addressing this question in this section is as follows.
e [ will show that Landau damping of perturbations of a plasma in thermal equilibrium
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leads to the heating of this equilibrium—basically, that energy is conserved. This is not
a surprise, but it is useful to see explicitly how this works (§4.1).

e I will then ask how it is possible to have heating (an irreversible process) in a plasma
that was assumed collisionless and must conserve entropy. In other words, why, physically,
is Landau damping a damping? This will lead us to consider entropy evolution in our
system and to introduce an important concept of free energy (§4.2).

e In the above context, we will examine (§§4.3 and 4.6) the Laplace-transform solu-
tion (3.8) for the perturbed distribution function and establish the phenomenon of phase
mizing—emergence of fine structure in velocity (phase) space. This will allow collisions
and, therefore, irreversiblity back in (§4.5). We will also see that the Landau-damped
solutions are not eigenmodes (while growing solutions can be), and so conclude that it
made sense to insist on using an initial-value-problem formalism.

4.1. Energy Conservation and Heating

Let us go back to the full, nonlinear Vlasov—Poisson system, where we now restore the
collision term:

ot v ot

- =dn Z o /d% fa. (4.2)

Yoo V- 2 (v G () (@)

Let us calculate the rate of change of the electric energy:

/d3 /d3 Ve, a /d3 ye at 2¢:an/ P do
4.2

) use (4.1)

by parts use (

=X fferatoe] o vn s fewa 5+ () |

—_——— — ———
by parts vanishes vanishes
because because

f(£o0) =0 number of

particles is

conserved

:an//d3rd3vfav-V<p=—/d3rE-j, (4.3)

where j is the current density. So the rate of change of the electric field is minus the rate
at which electric field does work on the charges, a.k.a. Joule heating—mnot a surprising
result. The energy goes into accelerating particles, of course: the rate of change of their
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kinetic energy is

3 3 mav afa
@S ff e M

use (4 1)
af. dfa
3 3 «
Z//drd { vaa+ma(V<p) 5o+ <8t>c]

—_—— —/ N——

vanishes by parts in v vanishes

because because

full energy is
divergence conserved

:—an//d3rd3vfav-Vap:/d3TE~j. (4.4)

Combining (4.3) and (4.4) gives us the law of energy conservation:

d s E?\
T <K+/dr87r>(). (4.5)

Exercise 4.1. Demonstrate energy conservation for the more general case in which magnetic-
field perturbations are also allowed.

Thus, if the perturbations are damped, the energy of the particles must increase—this
is usually called heating. Strictly speaking, heating is a slow increase in the mean tem-
perature of the thermal equilibrium. Let us make this statement quantitative. Consider
a Maxwellian plasma, homogeneous in space but possibly with some slow dependence on
time (cf. §2):

3/2
Na _Uz/vz Mea —-m 112/2T
— e tha =7 e o @, 4.6
Jou = et 72 : (%Ta) 0
In a homogeneous system with a fixed volume, the density n, is constant in time
because the number of particles is constant: d(Vn,)/dt = 0. We allow, however, that the
temperature may change: T, = T, (t). The total kinetic energy of the particles is

2 2
E=vY /d3v m;” foat > //d% a3 m‘;“ . (4.7)
& N —— o

3

= 5 ’I’LaTa

Let us average this over time, as per (2.7): the perturbed part vanishes and we have
=V %: g NaThy. (4.8)
Averaging also (4.5) and using (4.8), we get
3 dT, d1 (E?)
Ty ——2 = ——— [ dPr L 4.9
20;2" dt dtV/ "8 (4.9)

so the heating rate of the equilibrium equals the rate of decrease of the mean energy of
the perturbations.
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We saw that the perturbations evolve according to (3.16). If we wait for a while, only
the slowest-damped mode will matter, with all others exponentially small in comparison.
Let us call its frequency and its damping rate wg and 7, < 0, respectively, so E
e~ Wttt Tf we assume that |yx| < wk, we may define the time average (2.7) in such a
way that wy, ' < At < |yg|™*. Then (4.9) becomes

Finte g

The Landau damping rate of the electric-field perturbations is the heating rate of the
equilibrium.2*

This result, while at first glance utterly obvious, might, on reflection, appear to be
paradoxical: surely, the heating of the equilibrium implies increasing entropy—but the
damping that is leading to the heating is collisionless and, in a collisionless system, in
view of the H theorem, how can the entropy change?

if e <O0. (4.10)

4.2. Entropy and Free Energy

The kinetic entropy for each species of particles is defined to be

= —/ d3rd3v fo1n f,. (4.11)

This quantity [or, indeed, the full-phase-space integral of any quantity that is a function
only of f,; see (5.26)] can only be changed by collisions and, furthermore, the plasma-
physics version of Boltzmann’s H theorem says that

i;sa Z//d?’Td3 ( )1 fa =0, (4.12)

where equality is achieved iff all f, are Maxwellian with the same temperature T, = T'.

Thus, if collisions are ignored, the total entropy stays constant and everything that
happens is, in principle, reversible. So how can there be net damping of waves and,
worse still, net heating of the equilibrium particle distribution?! Presumably, any damping
solution can be turned into a growing solution by reversing all particle trajectories—so
should the overall perturbation level not stay constant?

As I already noted in §4.1, strictly speaking, heating is the increase of the equilibrium
temperature—and, therefore, of the equilibrium entropy. Indeed, for each species, the
equilibrium entropy is

3/2 3 muv?
_ 3, 13 3,13 _
/drd'ufolnfo /drdvfo{ln[ (%) ] ST 2T}
m\3/2 3
=V [—nlnn(%) + - nlnT—|— 24 (4.13)

where we have used [d3v (mv?/2)fy = (3/2)nT. Since n = const,

dS, 3 AT
T2y 2y — 4.14
@ V2@ (4.14)

so heating is indeed associated with the increase of Sy.
Since, according to (4.10), this can be successfully accomplished by collisionless damp-
ing and since entropy overall can only increase due to collisions, we must search for the

240Obviously, the damping of waves on particles of species « increases only the temperature of
that species.
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“missing entropy” (or, rather, for the missing decrease of entropy) in the perturbed part
of the distribution. The mean entropy associated with the perturbed distribution is

(65) = (S — So) = — / / &rd®o ((fo+ 6 In(fo + 5f) — foln fo)

2
:f//d:‘rd% <(fo+5f) {1nf0+ff;§;)+ }folnfo>

— //d% d3v <‘25]Z> (4.15)

after expanding to second order in small Jf/ fo and using (Jf) = 0. The total entropy of
each species, S = Sy + 4.5, can only by changed by collisions, so, if collisions are ignored,
any heating of a given species, i.e., any increase in its Sy [see (4.14)] must be compensated
by a decrease in its 6.9. The latter can only be achieved by increasing (5f?): indeed, using
(4.14) and (4.15), we find?®

di&)d<55>_3£_7//33 >
T(dt+ dt)_v dt d

[ ((2) P

If the right-hand side is ignored, T' can only increase if (§f?) increases too.

Q

It is useful to work out the collision term in (4.16) in terms of fo and df: using the fact that
(6f) = 0 by definition and that the number of particles is conserved by the collision operator,
we get

[feravr{(50) mr)= [[eres [r(52) mo+ (5 (5F) )]
:v/d%mzv (af‘)) /d3rd3 <Tf—? (%)). (4.17)

The second term is the collisional damping of df, of which more will be said soon. The first term is
the collisional energy exchange between the equilibrium distributions of different species (intra-
species collisions conserve energy, but inter-species ones do not because there is friction between
species). If the species under consideration is «, this energy exchange can be represented as
> o Vaa! (Ta —Tyr) (see, e.g., Helander & Sigmar 2005) and will act to equilibrate temperatures
between species as the system strives toward thermal equilibrium. If the collision frequencies
Voo are small, this will be a slow effect. Due to overall energy conservation, the energy-exchange
terms vanish exactly if (4.17) is summed over species.

Finally, let us sum (4.16) over species and use (4.9) to relate the total heating to the rate

of change of the electric-perturbation energy:
Toofa ( OOf
Z // an 81& c

D e s
(4.13)

=W
where we used (4.17) in the right-hand side (with the total equilibrium collisional energy-
exchange terms vanishing upon summation over species). The right-hand side must be
non-positive-definite because collisions cannot decrease entropy [see (4.12)].

%5In the second term, T' can be brought inside the time derivative because (3f%)/fo < fo.
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Equation (4.18) is a way to express the idea that, except for the effect of collisions, the
change in the electric-perturbation energy (= —heating) must be compensated by the
change in (df?), in terms of a conservation law of a quadratic positive-definite quantity,
W, that measures the total amount of perturbation in the system (a quadratic norm of
the perturbed solution).?% It is not hard to realise that this quantity is the free energy of
the perturbed state, comprising the entropy of the perturbed distribution and the energy
of the electric field:

W=¢E=> Tu(0Sa), €:/d3r<§j>. (4.19)

It is quite a typical situation in non-equilibrium systems that there is an energy-like (quadratic in
the relevant fields and positive definite) quantity, which is conserved except for dissipation. For
example, in hydrodynamics, the motions of a fluid are governed by the Navier—Stokes equation:

p (%? +u- Vu) = —Vp+ pAu, (4.20)

where u is velocity, p mass density (p = const for an incompressible fluid), p pressure and p the
dynamical viscosity of the fluid. The conservation law is

2
%/d%‘ % =—u /d37‘ |Vul® <0. (4.21)

The conserved quadratic quantity is kinetic energy and the negative-definite dissipation (leading
to net entropy production) is due to viscosity.?”

Thus, as the electric perturbations decay via Landau damping, the perturbed distri-
bution function must grow. This calls for going back to our solution for it (§3.1) and
analysing carefully the behaviour of df.

4.3. Structure of Perturbed Distribution Function

Start with our solution (3.8) for §f (p) and substitute into it the solution (3.15) for ¢(p):

2 1 . q Ci dfo
5f (p) T {Zm{Zp—pi +A(p)]k = +g}. (4.22)
— N
“kmgtlfz” poles
(ballistic) representing
pole linear
modes, see
(3.17)

To compute the inverse Laplace transform (3.6), we adopt the same method as in §3.1
(Fig. 5), viz., shift the integration contour to large negative Re p as shown in Fig. 15 and

Z6Note that the existence of such a quantity implies that the Maxwellian equilibrium is stable: if a
quadratic norm of the perturbed solution cannot grow, clearly there cannot be any exponentially
growing solutions. This is known as Newcomb’s theorem, first communicated to the world
in the paper by Bernstein (1958, Appendix I). A generalisation of this principle to isotropic
distributions is the subject of Q6(c) and of §5.2.2, where the conserved quantity W will reemerge
in a different way, confirming its status as a Platonic entity that cannot be avoided.

2"You will find a similar conservation law for incompressible MHD if, in §11.11, you work out
the time evolution of [d®r (pu®/2 + B*/87) assuming p = const and V - u = 0.
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FIGURE 15. Shifting the integration contour in (4.23). This is analogous to Fig. 5 but note the
additional “kinetic” pole.

use Cauchy’s formula:?8

1 [ieote s . q ciePit Of
0 =g [, w0 =i 3D G
—100+0 i K3

eigenmode-like
solution, comes from
the poles of ¢(p)

—ikwt ) -4 G e 0fo
+e {g Zmlzpi—kik-v—’—A( ik 'u)]k: av}' (4.23)

%

ballistic response,
comes from
p=—ik-v

The solution (4.23) teaches us two important things.

1) First, the Landau-damped solution is not an eigenmode. Even though the evolution
of the potential, given by (3.16), does look like a sum of damped eigenmodes of the form
p o ePit, Rep; < 0, the full solution of the Vlasov—Poisson system does not decay: there
is a part of Jf(t), the “ballistic response” oc e~**?* that oscillates without decaying—
in fact, we shall see in §4.6 that Jf even has a growing part! It is this part that is
responsible for keeping free energy conserved, as per (4.18) without collisions. Thus,
you may think of Landau damping as a process of transferring (free) energy from the
electric-field perturbations to the perturbations of the distribution function.

28 A perceptive reader has spotted that that this formula does not seem to satisfy of(t = 0) = g
unless A(—ik - v) = 0. This is because, as explained in fotnote 12, the method for calculating
the inverse Laplace transform that involves discarding the integral along the vertical part of
the shifted contour in Fig. 15 only works in the limit of long times. It is an amusing exercise
in complex analysis to show that, in the (overly restrictive) case of ¢(p) decaying quickly at
Rep — —oo0, the solution (4.23) is also valid at finite ¢ and, accordingly, A(—ik-v) =0 (i.e., A
vanishes for any purely imaginary p).
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FIGURE 16. Shearing of Jf in phase space.

In contrast to the case of damping, a growing solution (Rep; > 0) can be viewed as an eigenmode
because, after a few growth times, the first term in (4.23) will be exponentially larger than the
ballistic term. This will allow us to ignore the latter in our treatment of QLT (§7.1)—a handy,
although not necessary (see Q9), simplification. Note that reversibility is not an issue for the
growing solutions: so, there may be (and often are) damped solutions as well, so what? We only
care about the growing modes because they will be all that is left if we wait long enough.

2) Secondly, the df perturbations have fine structure in velocity (phase) space. This
structure gets finer with time: roughly speaking, if §f oc e =%, then

%% ~ ikt - 00 as t— oo. (4.24)
This phenomenon is called phase mizing. You can think of the basic mechanism respon-
sible for it as a shearing in phase space: the homogeneous part of the linearised kinetic
equation,
0of oof
5 TV, =
describes advection of df by a linear shear flow in the the (z,v) plane. This turns any dof
structure in this plane into long thin filaments, with large gradients in v (Fig. 16).

(4.25)

4.4. Landauw Damping Is Phase Mizing

Phase mixing helps us make sense of the notion that, even though ¢ is the velocity
integral of df, the former can be decaying while the latter is not:

p= i—z an /d?’v 8fo oxe 7 — 0. (4.26)
(03 N J/
fine
structure
cancels
The velocity integral over the fine structure increasingly cancels as time goes on—a
perturbation initially “visible” as ¢ phase-mixes away, disappearing into the negative
entropy associated with the fine velocity dependence of df [see (4.15)].

More generally speaking, one can similarly argue that the refinement of velocity
dependence of Jf causes lower velocity moments of of (density, flow velocity, pressure,
heat flux, and so on) to decrease with time, transferring free energy to higher moments
(ever higher as time goes on). One way to formalise this statement neatly is in terms
of Hermite moments: since Hermite polynomials are orthogonal, the free energy of the
perturbed distribution can be written as a sum of “energies” of the Hermite moments
[see (10.73)]. It is then possible to represent the Landau-damped perturbations as having
a broad spectrum in Hermite space, with the majority of the free energy residing in
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high-order moments—infinitely high in the formal limit of zero collisionality and infinite
time (see Q8 and Kanekar et al. 2015).

Since the mth-order Hermite moment can, for m > 1, be asymptotically represented as a cosine
function in v space oscillating with the “frequency” v2m/vn [see (10.74)], (4.24) implies that
the typical order of the moment in which the free energy resides grows with time as m ~ (kvtht)Z.

Taking Hermite (or other kind of) moments of the kinetic equation is essentially the
procedure for deriving “fluid” equations for the plasma—or, rather, plasma becomes a
fluid if this procedure can be stopped after a few moments (e.g., in the limit of strong
collisionality, this happens at the third moment; see Dellar 2015 and Parra 2018a). Since
Landau damping is a long-time effect of this phase-mixing process, it cannot be captured
by any fluid approximation to the kinetic system involving a truncation of the hierarchy
of moment equations at some finite-order moment—it is an essentially kinetic effect

“beyond all orders”.?°

4.5. Role of Collisions

As ever larger velocity-space gradients emerge, it becomes inevitable that at some point
they will become so large that collisions can no longer be ignored. Indeed, the Landau
collision operator is a Fokker—Planck (diffusion) operator in velocity space [see (1.36)]
and so it will eventually wipe out the fine structure in v, however small is the collision
frequency v. Let us estimate how long this takes.

The size of the velocity-space gradients of df due to ballistic response is given by (4.24).

Then the collision term is
0of 02%5f
(at) ~ V’UtQhW ~ _Vvt2hk2t26f' (427)
Solving for the time evolution of the perturbed distribution function due to collisions,
we get
aof

1
o~ —v(kvgpt)?5f = Of ~exp <3 I/kzvtzht?’) = e~ (t/t)°, (4.28)

Therefore, the characteristic collisional decay time is

1

be o ————
V3 (kg )2/3

(4.29)

Note that t. < v~! provided v < kv, i.e., t. is within the range of times over which our
“collisionless” theory is valid. After time ¢., “collisionless” damping becomes irreversible
because the part of df that is fast-varying in velocity space is lost (entropy has grown)
and so it is no longer possible, even in principle, to invert all particle trajectories,
have the system retrace back its steps, “phase-unmix” and thus “undamp” the damped
perturbation.

In a sufficiently collisionless system, phase unmixing is, in fact, possible if nonlinearity is

20ne useful way to see this is by examining the structure of Langmuir hydrodynamics,
which was the subject of Exercise 3.1. The moment hierarchy can be truncated by assuming
kvghe/w > 1, but one can never capture Landau damping however many moments one
keeps: indeed, the Landau damping rate (3.41) for, say, a Maxwellian plasma will be
v o< exp(—w?/k*v3,.), all coefficients in the Taylor expansion of which in powers of kvine/w
are zero.
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F1GURE 17. Coarse graining of the distribution function.

allowed—giving rise to the beautiful phenomenon of plasma echo, in which perturbations can first
appear to be damped away but then come back from phase space (§6.2). This effect is a source of
much preoccupation to pure mathematicians (Villani 2014; Bedrossian 2016): indeed the validity
of the linearised Vlasov equation (3.1) as a sensible approximation to the full nonlinear one
(2.12) is in question if the velocity derivative 99f /0v in the last term of the latter starts growing
uncontrollably. Phase unmixing has also recently turned out to have interesting consequences
for the role of Landau damping in plasma turbulence (Schekochihin et al. 2016; Adkins &
Schekochihin 2018).

Some rather purist theoreticians sometimes choose to replace collisional estimates of the type
discussed above by a stipulation that Jf (v) must be “coarse-grained” beyond some suitably
chosen scale in v (Fig. 17)—this is equivalent to saying that the formation of the fine-structured
phase-space part of df constitutes a loss of information and so leads to growth of entropy (i.e.,
the loss of negative entropy associated with (§f?)). Somewhat non-rigorously, this means that we
can just consider the ballistic term in (4.23) to have been wiped out and use the coarse-grained
(i.e., velocity-space-averaged) version of &f:*°

— ciePit dfo
_’*meuk ke (4.30)

We can check that the correct solution (3.16) for the potential can be recovered from this:

4 -
== :qa/dBvdfa
drg? 1 0 foa it
— pit (2] . _ — . oPi
E cie { ga k2 /d v btk k o 1 —|—1] % cie’’. (4.31)

= —e(pi, k) = 0 by definition of p;

If you are wondering how this works without the coarse-graining kludge, read on.

4.6. Further Analysis of 6f : the Case—van Kampen Mode

Having given a rather qualitative analysis of the structure and consequences of the
solution (4.23), I anticipate a degree of dissatisfaction from a perceptive reader. Yes,
there is a non-decaying piece of Jf. But conservation of free energy in a collisionless
system in the face of Landau damping in fact requires (§f?) to grow, not just to fail to
decay [see (4.18)]. How do we see that this does indeed happen? The analysis that follows
addresses this question. These considerations are not really necessary for most practical

30With an understanding that any integral involving the resonant denominator must be taken
along the Landau contour (see Q9). If you adopt this shorthand, you can, nonrigorously but
often expeditiously, use Fourier transforms into frequency space, rather than Laplace transforms.
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plasma-physics calculations (see, however, Q9), but it may be necessary for your piece
of mind and comfort with this whole conceptual framework.
Let us rearrange the solution (4.23) as follows:

AN e O ikt
5f(t)—zm i e k 50 +(g+...)e . (4.32)

The second term is the ballistic evolution of perturbations (particles flying apart in
straight lines at different velocities)—a homogeneous solution of the kinetic equation
(3.1). This develops a lot of fine-scale velocity-space structure, but obviously does
not grow. The first term, a particular solution arising from the (linear) wave-particle
interaction, is more interesting, especially around the resonances Rep; + k- v = 0.

Consider one of the modes, p; = —iw + 7y, and assume v < k - v ~ w. This allows us
to introduce “intermediate” times:

1 1
— K - 4.33
o 5 (4.33)
This means that the wave has had time to oscillate, phase mixing has got underway,
but the perturbation has not yet been damped away completely. We have then, for the
relevant piece of the perturbed distribution (4.32),

epit _ e—ik~vt te'yt _ e—i(k‘v—w)t 1— e—i(km—w)t

6 - - —iw ~ —j —twt—- - 4.34
f o p; +ik-v e k-v—w-—1iy e k-v—w ( )

with the last, approximate, expression valid at the intermediate times (4.33), assuming
also that, even though we might be close to the resonance, we shall not come closer than
7, viz., |k - v — w| > v. Respecting this ordering, but taking |k - v — w| < 1/¢, we find

Of oc te ™t (4.35)

Thus, J§f has a peak that grows with time, emerging from the sea of fine-scale but constant-
amplitude structures (Fig. 18). The width of this peak is obviously |k - v —w| ~ 1/t and
so 0f around the resonance develops a sharp structure, which, in the formal limit ¢t — oo
(but respecting vt < 1, i.e., with infinitesimal damping), tends to a delta function:

. —iwt 1- eii(k.viw)t —iwt
6f X —1e W — € 7T5(k U — W) as t— oo. (436)
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Here is a “formal” proof:

1—e @ | _cosaxt . sinat @t _e~it 4 ot N
- i ~ = [ dt'e"™ —ind(z) as t— oo
T T T 2x 2 )

—_——— N——

finite as =1t at

t — oo, =0,

even at so dom-
z=0 inant

(4.37)
The delta-function solution (4.36) is an instance of a Case—van Kampen mode (van Kam-
pen 1955; Case 1959)—an object that belongs to the mathematical realms briefly alluded
to in §3.13. Note that writing the solution in the vicinity of the resonance in this form
is tantamount to stipulating that any integral taken with respect to v (or k) and
involving df must always be done along the Landau contour, circumventing the pole
from below [cf. (3.23)]. We will find the representation (4.36) of df useful in working out
the quasilinear theory of Landau damping (in Q9).

If we restore finite damping, all this goes on until ¢ ~ 1/v, with the delta function
reaching the height « 1/ and width o . In the limit ¢ > 1/, the damped part of the
solution decays, ¢’* — 0, and we are left with just the ballistic part, the second term
in (4.23).

4.7. Free-Energy Conservation for a Landau-Damped Solution

Finally, let us convince ourselves that, if we ignore collisions, we can recover (4.18) with a zero
right-hand side from the full collisionless Landau-damped solution given by (3.16) and (4.32).
For simplicity, let us consider the case of electron Langmuir waves and prove that

4 [y DL _ LB, B

_ - . 4.
2fo at sr 23 (4.38)

Ignoring the term in (4.32) that involves g as it obviously cannot give us a growing amplitude,
letting the relevant root of the dispersion relation be p; = —iwpe + Y&, where 7, is given
by Eq. (3.41), and assuming a Maxwellian fo, we may write the solution (4.32) for electrons
(g = —e) as

1= —i(k-v—ip;)t 2%k - 1— —i(k-v—wpe)t
Ok~ S ert 228 AL IRV L )l — (4.39)
Me k-v—ip; Ve T k-v—wpe
—~— —_—
= Pk ~imé(k v —wpe)

We are going to have to compute |(5fk|2 and squaring delta functions is a dangerous game
belonging to the class of games that one must play veeery carefully. Here is how:

2

9 |1—e it 04 . ,xt 2sinat 1—eit]?

ol e | eyt o e = F?‘*:?%W”

(4.40)
Using this prescription,
s, T|ofx|? s, €lowl® 2
/d v 5o = [d vm(lvv) 27to(k - v — wpe) fo
Elo> wpe Wpe |Er|?

=2t F( b ) = 2yt . 4.41

8 k3 nevd,, k Ve 8 ( )

= —vyk > 0; see (3.41)

Thus, the entropic part of the free energy grows secularly with time and its time derivative
satisfies (4.38), g.e.d.
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5. General Kinetic Stability Theory

In §3, we learned how to perturb some given equilibrium distribution fo, infinitesimally and
find the evolution of the perturbation: damping, growth, oscillation (as well as the interesting
phase-space happenings that came to light in §4). Let us now pose the question in a more general
way. In a collisionless plasma, there can be infinitely many possible equilibria, including quite
complicated ones. If we set one up, will it persist, i.e., is it stable? If it is not stable, what
modification do we expect it to undergo in order to become stable? Other than solving the
dispersion relation (3.17) to answer the first question and developing various types of nonlinear
theories to answer the second (along the lines advertised in §2.4 and developed in §7 and
subsequent sections), both of which can be quite complicated and often intractable technical
challenges, do we have at our disposal any general principles that allow us to pronounce on
stability, linear or otherwise? Is there a general insight that we can cultivate as to what sort of
distributions are likely to be stable or unstable and to what sorts of perturbations?

We have had glimpses of such general principles already. For example, in §3.5, we ascertained,
by explicit calculation, that we could encounter a situation with a (small) growth rate if the
equilibrium distribution had a positive derivative somewhere along the direction (z) of the wave
number of the perturbation, viz., v.F.(v.) > 0. We developed this further in §3.7, finding
that not only hot but also cold beams and streams triggered instabities. In Exercise 3.2, I
dropped a hint that general statements could perhaps be made about certain general classes of
distributions: 3D-isotropic equilibria are stable (we shall prove this shortly). In Q6, we found that
isotropic, monotonically decreasing equilibria are stable not just against infinitesimal (linear),
electrostatic perturbations, but also against small but finite electromagnetic ones, giving us a
taste of a powerful nonlinear constraint. How general are these statements? Are they sufficient
or also necessary criteria? Is there a universal stability litmus test? Let us attack the problem
of kinetic stability with an aspiration to generality (although still, for now, for electrostatic
perturbations only).

5.1. Linear Stability: Nyquist’s Method

We start with the relatively modest ambition to determine linear stability of generic equilibria,
i.e., their stability against infinitesimal perturbations. This comes down to the question of
whether the dispersion relation (3.17) has any unstable solutions: roots with growth rates
’yz(k:) > 0.

It is going to be useful to write the dielectric function (3.26) as follows

w2 F'(vy)
Ey=1- %2 dv, —22— 5.1
k) =15 [ a T (5.1
_ 1 2 Me F. ZmeF;
F=— S z2lep, = Te 2 ln 5.2
ne; Ma Ne + m; Ny ( )

where the last expression in (5.2) is for the case of a two-species plasma. Thus, the distribution
functions of different species come into the linear problem additively, weighted by their species’
charges and (inverse) masses.

Let us develop a method (due to Nyquist 1932) for counting zeros of e(p) (we will henceforth
suppress k in the argument) in the half-plane Rep > 0 (the unstable roots of the dispersion
relation). We observe that e(p) is analytic (be virtue of our efforts in §3.2 to make it so) and
that if p = p; is its zero of order N;, then in its vicinity,

Olne(p)  N;
op pP—Dpi

e(p) = const (p — pi)Vi + ... . (5.3)

so zeros of € are poles of d1n e(p)/dp; the latter function has no other poles because e is analytic.
If we now integrate this function over a closed contour Cr running along the imaginary axis

(and just to the right of it: p = —iw + 0) in the complex p plane from iR to —iR and then along
a semicircle of radius R back to iR (Fig. 19), we will, in the limit R — oo, capture all these
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FIGURE 19. Integration contour for (5.4).

poles:

fim [ ap 2

g [ - 271'2'21: N; = 27N, (5.4)

where N is the total number of zeros of €(p) in the half-plane Rep > 0. It turns out (as we shall
prove in a moment) that the contribution to the integral over Cr from the semicircle vanishes
at R — oo and so we need only integrate along the imaginary axis:

—i00+40 1 _
2miN = ap 2me®) _ ) «(=ic0) (5.5)
+ico+0 op €(+i00)
Proof. All we need to show is that
1

|p|81(197;(p) —0 as |p| = oo, Rep>0. (5.6)

Indeed, using (5.1) and the Landau integration rule (3.20), we have in this limit:

wpe [T o, ik ikv. 1 2
e(p)=1-— k‘; /m dsz(vz); (1774“.) z1+ﬁ;wpa, (5.7)

where we have integrated by parts and used [ dv. Fa = na. Manifestly, the condition (5.6) is
satisfied.

Note that, along the imaginary axis p = —iw, by the same expansion and using also the
Plemelj formula (3.23), we have

w2

e(—iw) ~ 1 — é > wha —in F’(f) S1Fi0 as w— Foo. (5.8)

k

This is going to be useful shortly.

In view of (5.8) and of our newly proven formula (5.5), as the function ¢(—iw) runs along the
real line in w, it changes from

€(ico) =1—1i0 at w= —o0, (5.9)

where we have arbitrarily fixed its phase, to

e(—ico) =™ N 100 at w = +oo, (5.10)
where N is the number of times the function

[77/_:0 v, E0=) mF’(S)] (5.11)

e(—iw) =1— F——; A

2
Wpe
k2
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FIGURE 20. Two examples of Nyquist diagrams showing stability (because failing to circle zero):
(a) the case of a monotonically decreasing distribution (§5.1.1, Fig. 21a); (b) another stable case,
even though very complicated (it also illustrates the argument in §5.1.2).

circles around the origin in the complex e plane. Since NV is also the number of unstable roots
of the dispersion relation, this gives us a way to count these roots by sketching e(—iw)—this
sketch is called the Nyquist diagram. Two examples of Nyquist diagrams implying stability are
given in Fig. 20: the curve ¢(—iw) departs from 1 — 0 and comes back to 1+ 0 via a path that,
however complicated, never makes a full circle around zero. Two examples of unstable situations
appear in Fig. 22(b,d): in these cases, zero is circumnavigated, implying that the equilibrium
distribution F is unstable (at a given value of k).

In order to work out whether the Nyquist curve circles zero (and how many times), all one
needs to do is find Re e(—iw) at all points w where Im e(—iw) = 0, i.e., where the curve intersects
the real line, and hence sketch the Nyquist diagram. We shall see in a moment, with the aid of
some important examples, how this is done, but let us do a little bit of preparatory work first.

It follows immediately from (5.11) that these crossings happen whenever w/k = v, is a velocity
at which F(v,) has an extremum, F’(v.) = 0. At these points, the dielectric function (5.11) is
real and can be expressed so:

2
Wpe

e(—tkv,) =1+ 2 P(v.)|. (5.12)

Here P(v,) is (minus) the principal-value integral in (5.11), which can be manipulated as follows:

+oo ’ v, +o0 _ —
P(v.) = _7)/ dv, F(v:) = —73/ dv, ! 4 [F(v2) — F(v.)]

Vz — Ux

—o0

- /“” dv, F0) = F(v:) (5.13)

—oo (s = vs)?

—o0

where we have integrated by parts; the additional term F(v.) was inserted under the derivative
in order to eliminate the boundary terms arising in this integration by parts around the pole
31
Vy = Uy
Now we are ready to analyse particular (and, as we shall see, also generic) equilibrium
distributions F(v;).

5.1.1. Stability of Monotonically Decreasing Distributions

Consider first a distribution function that has a single maximum at v. = vo and monotonically
decays in both directions away from it (Fig. 21a): F'(vo) = 0, F"(vo) < 0. This means that,

31Note that in the final expression in (5.13), there is no longer a need for principal-value
integration because, v. being a point of extremum of F', the numerator of the integrand is
quadratic in v, — v, in the vicinity of v..
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FI1GURE 21. Two examples of equilibrium distributions.

besides at w = Foo, Im e(—iw) o F’'(w/k) also vanishes at w = kvo. It is then clear that

2
Wp

e(—ikvo) =1+ k; P(vo) > 1 (5.14)
because F(vg) > F(v) for all v, and so P(vo) > 0. Thus, the Nyquist curve departs from 1 — 0
at w = —oo, intersects the real line once at w = kvg and then comes back to 1 + 0 without

circling zero; the corresponding Nyquist digram is sketched in Fig. 20(a). Conclusion:

| Monotonically decreasing distributions are stable against electrostatic perturbations. |

We do not in fact need all this mathematical machinery just to prove the stability of
monotonically decreasing distributions (in §5.2.1, we will see that this is a very robust result)—
but it will come handy when dealing with less simple cases. Parenthetically, let us work out
some direct proofs of stability.

Exercise 5.1. Direct proof of linear stability of monotonically decreasing distribu-
tions. (a) Consider the dielectric function (5.1) with p = —iw + v and assume v > 0 (so the
Landau contour is just the real axis). Work out the real and imaginary parts of the dispersion
relation €(p) = 0 and show that it can never be satisfied if v, F'(v,) < 0, i.e., that any equilibrium
distribution that has a maximum at zero and decreases monotonically on both sides of it is stable
against electrostatic perturbations.>?

(b) What if the maximum is at v, = vy # 07

Exercise 5.2. Direct proof of linear stability of isotropic distributions. (a) Recall
Exercise 3.2 and show that all homogeneous, 3D-isotropic (in velocity) equilibria are stable
against electrostatic perturbations (with no need to assume long wave lengths).

(b) Prove, in the same way, that isotropic equilibria are also stable against electromagnetic
perturbations. You will need to derive the transverse dielectric function in the same way as in
Q2 or Q3, but for a general equilibrium distribution fo (ve, vy, v:); failing that, you can look it
up in a book, e.g., Krall & Trivelpiece (1973) or Davidson (1983).

5.1.2. Penrose’s Instability Criterion

We would like to learn how to test for stability generic distributions that have multiple minima
and maxima: the simplest of them is shown in Fig. 21b, evoking the bump-on-tail situation
discussed in §3.5 and thus posing a risk (but, as we are about to see, not a certainty!) of being
unstable.

The Nyquist curve e(—iw) departs from 1 — 40 at w = —oo, then crosses the real line for

32This kind of argument can also be useful in stability considerations applying to more
complicated situations, e.g., magnetised plasmas (Bernstein 1958).
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FIGURE 22. Various possible forms of the Nyquist diagram for a single-minimum distribution
sketched in Fig. 21b: (a) e(—ikvo) > 1, stable; (b) e(—ikvo) < 0, e(—ikv2) > 1, unstable;
(c) e(—ikvo) < e(—ikva) < 0, stable; (d) e(—ikvo) < 0 < e(—ikv2) < 1, unstable.

the first time at w = kvy, corresponding to the leftmost maximum of F.3® This crossing is
upwards, from the lower to the upper half-plane, and it is not hard to see that a maximum will
always correspond to such an upward crossing and a minimum to a downward one, from the
upper to the lower half-plane: this follows directly from the change of sign of Ime in Eq. (5.11)
because F'(w/k) goes from positive to negative at any point of maximum and vice versa at any
minimum. After a few crossings back and forth, corresponding to local minima and maxima
(if any), the Nyquist curve will come to the the downward crossing corresponding to the global
minimum (other than at v. = +00) of the distribution function at, say, w = kvo. If at this point
P(vo) > 0, then e(—ikvo) > 1 and the same is true at all other crossing points v. because vo
is the global minimum of F' and so P(v.) > P(vo) > 0 for all other extrema. In this situation,
illustrated in Fig. 22(a), the Nyquist curve never circumnavigates zero and, therefore, P(vo) > 0
is a sufficient condition of stability. It is also the necessary one, which is proved in the following
way.

Suppose P(vg) < 0. Then, in (5.12), we can always find a range of k that are small enough
that e(—ikvo) < 0, so the downward crossing at vo happens on the negative side of zero in
the e plane. After this downward crossing, the Nyquist curve will make more crossings, until it
finally comes to rest at 1 + i0 as w = 4o0. Let us denote by va > vy the point of extremum
for which the corresponding crossing occurs at a point on the Ree axis that is closest to (but
always will be to the right of) e(—ikvg) < 0. If e(—ikvz) > 0, then there is no way back, zero
has been fully circumnavigated and so there must be at least one unstable root (see Fig. 22b,d).
If e(—ikvz) < 0, there is in principle some wiggle room for the Nyquist curve to avoid circling
zero (see Fig. 22c¢ for a single-minimum distribution of Fig. 21b—or Fig. 20b for some serious
wiggles). However, since P(v2) > P(vo) for any vz (because v is the global minimum of F'), we
can always increase k in (5.12) just enough so €(—ikv2) > 0 even though e(—ikvo) < 0 still (this

33For the distribution sketched in Fig. 21(b), this maximum is global, so P(v1) > 0 and,
therefore, e(—ikv1) > 1. This is the rightmost such crossing when v is the global maximum.
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corresponds to turning Fig. 22c¢ into Fig. 22d). Thus, if P(vo) < 0, there will always be some
range of k inside which there is an instability.

We have obtained a sufficient and necessary condition of instability of an equilibrium F(v.)
against electrostatic perturbations: if vo is the point of global minimum of F,3*

+o0 n I B
P(vo) :/ dv, Fvo) = F(v:) <0 < Fisunstable]. (5.15)

—oo (UZ _1]0)2

This is the famous Penrose’s instability criterion (the famous criterion, not the famous Penrose;
it was proved by Oliver Penrose 1960, in a stylistically somewhat different way than I did it here).
Note that considerations of the kind presented above can be used to work out the wave-number
intervals, corresponding to various troughs in F', in which instabilities exist.

Intuitively, the criterion (5.15) says that, in order for a distribution to be unstable, it needs to
have a trough and this trough must be deep enough. Thus, if F'(vo) = 0, i.e., if the distribution
has a “hole”, it is always unstable (an extreme example of this is the two-stream instability;
see Exercise 3.5). Another corollary is that you cannot stablise a distribution by just adding
some particles in a narrow interval around v, as this would create two minima nearby, which,
the filled interval being narrow, are still going to render the system unstable. To change that,
you must fill the trough substantially with particles—hence the tendency to flatten bumps into
plateaux, which we will discover in §7 (this answers, albeit in very broad strokes, the question
posed at the beginning of §5 about the types of stable distributions towards which the unstable
ones will be pushed as the instabilities saturate).

Exercise 5.3. Consider a single-minimum distribution like the one in Fig. 21(b), but with
the global maximum on the right and the lesser maximum on the left of the minimum.
Draw various possible Nyquist diagrams and convince yourself that Penrose’s criterion works.
If you enjoy this, think of a distribution that would give rise to the Nyquist diagram in Fig. 20(b).

Exercise 5.4. What happens if the distribution function F has an inflection point, i.e.,
F(Uo) = O, Fl(vo) = 0, F”(vo) =07

Exercise 5.5. What happens if the distribution function has a trough with a flat bottom (i.e.,
a flat minimum over some interval of velocities)?

5.1.3. Bumps, Beams, Streams and Flows

An elementary example of the use of Penrose’s criterion is the two-stream instability, first
introduced in Exercise 3.5. The case of two cold streams, represented by (3.59) and Fig. 12(a),
is obviously unstable because there is a gaping hole in this distribution. What if we now give
these streams some thermal width? This can be modeled by the double-Lorentzian distribution
(Fig. 12b)
NeVb 1 1

21 | (ve —ub)? + v} + (v + up)? + v}
which is particularly easy to handle analytically. For the moment, we will consider the ions to
be infinitely heavy, so F' = F..

Since the distribution (5.16) is symmetric, it can only have its minimum at vo = 0. Asking
that it should indeed be a minimum, rather than a maximum, i.e., F'(0) > 0, we find that the
condition for this is

Fe(v.) = , (5.16)

Ub
Up > ——=. 5.17
V3 (5.17)
Otherwise, the two streams are too wide (in velocity space) and the distribution is monotonically
decreasing, so, according to §5.1.1, it is stable.
If the condition (5.17) is satisfied, the distribution has two bumps, but is this enough to make

34 Another way of putting this is: a distribution F is unstable iff it has a minimum at some vo
for which P(vo) < 0. Obviously, if P(vg) < 0 at some minimum, it is also negative at the global
minimum.
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FIGURE 23. Combined distribution (5.2) for cold ions and hot electrons (cf. Fig. 13).

it unstable? Substituting this distribution into Penrose’s criterion (5.15) and doing the integral
exactly,>® we get the necessary and sufficient instability condition:

u2 —U2
P(0) = —W <0 & [u>w]. (5.18)

Thus, if the streams are sufficiently fast and/or their thermal spread is sufficiently narrow, an
instability will occur, but it is not quite enough just to have a little trough. Note that Pen-
rose’s criterion does not differentiate between hydrodynamic (cold) and kinetic (hot) instability
mechanisms (§3.7).

Exercise 5.6. Use Nyquist’s method to work out the range of wave numbers at which perturba-
tions will grow for the two-stream instability (you will find the answer in Jackson 1960—ves, that
Jackson). Convince yourself that this is all in accord with the explicit solution of the dispersion
relation that you might have already obtained in Q4.

It is obvious how these considerations can be generalised to more complicated situations, e.g.,
to cases where the streams have different velocities, where one of them is, in fact, the thermal
bulk of the distribution and the other is a little bump on its tail (§3.7), where there are more than
two streams, etc. The streams also need not be composed of the particles of the same species:
indeed, as we saw in (5.1), in the linear theory, the distributions of all species are additively
combined into F' with weights that are inversely proportional to their masses [see (5.2)]. Thus,
the ion-acoustic instability (§3.9) is also just a kind of of two-stream—or, if you like, bump-on-
tail—instability, with the entire hot and mighty electron distribution making up a magnificent
bump on the tail of the cold, m./m;-weighted ion one (Fig. 23).>® When the streams/beams
have thermal spreads, they are more commonly thought of as mean flows—or currents, if the
electron flows are not compensated by ion ones.

Exercise 5.7. Construct an equilibrium distribution to model your favorite plasma system
with flows and/or beams and investigate its stability: find the growth rate as a function of wave
number, instability conditions, etc.

5.1.4. Anisotropies

So we have found that various holes, bumps, streams, beams, flows, currents and other
such nonmonotonic features in the (combined, multispecies) equilibrium distribution present
an instability risk, unless they are sufficiently small, shallow, wide and/or close enough to

35The easiest way to do it is to turn the integration path along the real axis into a loop by
completing it with a semicircle at positive or negative complex infinity, where the integrand
vanishes, and use Cauchy’s formula.

36In fact, when the two species’ temperatures are the same, there is still an instability, whose
criterion can again be obtained by the Nyquist-Penrose method: see Jackson (1960).
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the thermal bulk. All of these are, of course, anisotropic features—indeed, as we saw in Exer-
cise 5.2, 3D-isotropic distributions are harmless, instability-wise. It turns out that anisotropies
of the distribution function in velocity space are dangerous even when the distribution decays
monotonically in all directions.>” However, the instabilities that occur in such situations are
electromagnetic, rather than electrostatic, and so require an investigation into the properties of
the transverse dielectric function of the kind derived in Q2 or Q3, but for a general equilibrium.
The corresponding instability criterion is derived in Q5, by a somewhat adjusted version of
Nyquist’s method. A nice treatment of anisotropy-driven instabilities can be found in Krall &
Trivelpiece (1973) and an even more thorough one in Davidson (1983). In §5.2.4, we will show
in quite a simple way that, at least in principle, there is energy to be extracted from anisotropic
distributions.

5.2. Nonlinear Stability: Thermodynamic Method

Let me now change tack completely and ask the stability question while forbidding myself any
recourse to linear theory. The general idea is to find, for a given initial equilibrium distribution
fo, an upper bound on the amount of energy that might be transferred into electromagnetic
perturbations (not necessarily small). If that bound is zero, the system is stable; if it is not
zero but is sharp enough to be nontrivial, it gives us a constraint on the amplitude of the
perturbations in the saturated state.

Here is how it is done.®® Let us introduce some function

n= [aor B0 [[ara Ao, - Ao f = £+ AL, (519
£

= A[fvf*]

where f. is some trial distribution, which will represent our best guess about the properties
of the stable distribution towards which the system will want to evolve and/or in the general
vicinity of which we are interested in investigating stability. The function A(r,v, f) is chosen in
such way that for any f,

A[f, f.] > 0. (5.20)

If it is also chosen so that H is conserved by the (collisionless) Vlasov—Maxwell equations, then
H(t) = H(0) and the inequality (5.20) gives us the following bound on the field energy at time ¢:

[£(t) — £(0) = Alfo, £] = A (1), £:] < Alfo, £] |, (5.21)

where fo is the initial (¢ = 0) equilibrium that is under investigation.

The bound (5.21) implies stability if A[fo, f«] = 0, i.e., certainly for fo = f.. This guarantees
stability of any f. for which a functional A[f, f.] satisfying (5.20) and giving a conserved H can
be produced.

Physically, the above construction is nontrivial if our bound on the energy is smaller than the

37In Q3, you have an opportunity to derive the most famous of all instabilities triggered by
anisotropy.

38These ideas appear to have crystallised in the papers by T. K. Fowler in early 1960s (see his
review, Fowler 1968; his reminiscences and speculations on the subject 50 years later can be
found in Fowler 2016), although a number of founding fathers of plasma physics were thinking
along these lines around the same time (references are given in opportune places below).

39This statement is based on the assumption that if the total electromagnetic enegy decreases,
that corresponds to initial perturbations decaying. You might wonder what happens if £(0)
contains some equilibrium magnetic field and if that equilibrium is unstable: can the equilibrium
field’s energy be tapped and transferred partially into unstable perturbations of kinetic energy in
such a way that £(¢) < £(0) even though the system is unstable? I do not know how to prove that
this is impossible or indeed whether this is impossible (you may wish to think about this question;
§14 might help). To avoid this problem, we may restrict applicability of all considerations in
this section to unmagnetised equilibria.
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total initial kinetic energy of the particles:

Alfo, f.] < Z//d3rd3v m;’”z foa = K(0). (5.22)

It is obvious that one cannot extract from a distribution more energy than K (0), but the above
tells us that, in fact, one can extract less. Thus, A[fo, f«] can be thought of as an upper bound
on the available energy of the distribution fo. The sharper it can be made, the closer we are to
learning something useful. Thus, the idea is to identify some suitable functional A[f, f.] for which
H is conserved and some class of trial distributions f. for which (5.20) holds, then minimise
Al fo, f«] within that class, subject to whatever physical constraints one can reasonably expect
to hold: e.g., conservation of particles, momentum, any other (possibly approximate) invariants
that the system might possess (e.g., its adiabatic invariants; see Helander 2017).40

To make some steps towards a practical implementation of this programme, let us investigate
how to choose A in such way as to ensure conservation of H:

an _ de vy DAL 5 [[ oty (24 mar) 0 _
dt_dt_'_%//drdvafa 5 —; d°rd°v ol 3 o =0. (5.23)

The second equality was obtained by using the conservation of total energy,

2
%(5”():0, K:Z//dsrd% Mot . (5.24)

2

where K is the kinetic energy of the particles. Now (5.23) tells us how to choose \A:

(5.25)

Atrov )= 3 [M5 o + Gt

@

where G (fa) are arbitrary functions of fo. These can be added here because Vlasov’s equation
has an infinite number of invariants: for any (sufficiently smooth) Ga(fa),

%//d%d%@*a(fa) =0. (5.26)

This follows from the fact that, in the absence of collisions, the kinetic equation (1.30) expresses
the conservation of phase volume in (v, v) space (the flow in this phase space is divergence-free).

Exercise 5.8. Prove the conservation law (5.26), assuming that the system is isolated.

The existence of an infinite number of conservation laws suggests that the evolution of a
collisionless system in phase space is much more constrained than that of a collisional one.
In the latter case, the evolution is constrained only by conservation of particles, momentum
and energy and the requirement that entropy must not decrease. I shall return shortly to the
question of how available energy might be related to entropy.

A quick sanity check is to choose Go(fo) = 0. The inequality (5.20) is then certainly satisfied
for f. o< 6(v) and the bound (5.21) becomes

£(t) — £(0) < K(0), (5.27)

i.e., one cannot extract any more energy than the total energy contained in the distribution—
indeed, one cannot. Let us now move on to more nontrivial results.

40Krall & Trivelpiece (1973) comment with a slight air of resignation that, with the rules of the
game much vaguer than in linear theory, the thermodynamical approach to stability is “more
art than science”. In the Russian translation of their textbook, this statement provokes a stern
footnote from the scientific editor (A. M. Dykhne), observing that the right way to put it would
be “more art than craft”.
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FIGURE 24. Gardner’s rearrangement of the distribution, conserving phase-space volume.

5.2.1. Gardner’s Theorem

Gardner (1963), in a classic two-page paper, proved that if the equilibrium distributions of all
species are isotropic and decrease monotonically as functions of the particle energy e = mav? /2,
the system is stable?!:

8fOoz
Ocqa

Proof. For every species (suppressing species indices), let us again take G(f) = 0 in (5.25), but
construct a nontrivial f, that satisfies (5.20) with f(¢) at any time ¢ since the beginning of its
evolution from the initial distribution fo.

For any given fo, let me define f. to be a monotonically decreasing function of v? (i.e., energy)
such that for any A > 0, the volume of the region in the phase space (r,v) where f. > A is the
same as the volume of the phase-space region where fo > A. Then f. is the distribution with
the smallest kinetic energy [see (5.24)], denoted here by K., that can be reached from fo while
preserving phase-space volume:

<0 = stability|. (5.28)

K(t) > K. (5.29)

Indeed, while the phase-space volume occupied by any given value of the probability density
is the same for fo and for f., the corresponding energy is always lower for f. than for fy or
for any other f that can evolve from it, because in f., the values of the probability density are
rearranged in such a way as to put the largest of them at the lowest values of v2, thus minimising
the velocity integral in (5.24).

A vivid analogy is to think of the evolution of f under the collisionless kinetic equation (1.28)
as the evolution of a mixture of “fluids” of different densities (values of f) advected in a 6D
phase-space (r,v) by a divergence-free flow (7,v). The lowest-energy state is the one in which
these fluids are arranged in layers of density decreasing with increasing v?, the heaviest at the
bottom, the lightest at the top (Fig. 24).

In view of (5.29) and since A is given by (5.25) with G(f) =0,

Alf, f.] = K(t) — K. >0, (5.30)

80 (5.20) holds and the bound (5.21) follows. When fo = fs, i.e., the equilibrium distribution
satisfies (5.28), the system is stable, g.e.d.

Note that the condition (5.28) is sufficient, but not necessary, as we already know from, e.g.,
Exercise 5.2.

“The stability of Mazwellian equlibria against small perturbations was first proved by
W. Newcomb, whose argument was published as Appendix I of Bernstein (1958) (and followed
by Fowler 1963, who proved stability against large perturbations). Gardner (1963) attributes the
first appearance of the stability condition (5.28) to an obscure 1960 report by M. N. Rosenbluth,
although the same condition was derived also by Kruskal & Oberman (1958), more or less in the
manner described in §5.2.2. Many great minds were clearly thinking alike in those glory days of
plasma physics.
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In a recent paper, Helander (2017) developed a beautiful scheme for calculating “ground states”
(the states of minimum energy) of Vlasov’s equation, i.e., for determining f. and then calculating
K. to work out specific values of the available energy implied by the upper bound (5.21),
Alfo, f+] = K(0) — K..

5.2.2. Small Perturbations

There is a neat development (due, it seems, to Kruskal & Oberman 1958 and Fowler 1963)
of the formalism presented at the beginning of this section that leads again to Gardner’s result
(5.28), but puts us in contact with some familiar themes from §4.

Let us investigate the stability of isotropic distributions with respect to small (but not
necessarily infinitesimal) perturbations, i.e., we take f(t) = fo + of, Of < fo, and also f. = fo,
so the bound (5.21) will imply stability if we can find G(f) such that (5.20) holds.

In (5.25), we expand

G = G(fo) + G (fo)d +G"(f0) -

and use this to obtain, keeping terms up to second order,

@), fol :zaj//d%d% {[m v

Suppose we contrive to pick Go(foa) in such a way that

(5.31)

Go(foa) | 0fa + Galfoa) 22> i } : (5.32)

Mav>

Go(foa) = — 5

obliterating the first-order term in (5.32). Then, since foa = foa(€a) by assumption (it is
isotropic), differentiating the above condition with respect to foa gives

U _ 1 3,13 5fa
Gal(foa) = oo ), fo] = Z / /d d*v o5 (5.34)

We see that A[f(¢), fo] = 0 and, therefore, (5.21) with f. = fo implies stability if, again, foa(£a)
is monotonically decreasing for all species.

Besides stability, we have also found an interesting quadratic conserved quantity for our
system:

= —¢q, (5.33)

2 2
H:5+A[f,f0]:/d3 E +B +Z//d3rd3 % (5.35)

The condition (5.28) makes H positive definite and so no wonder the system is stable: perturba-
tions around fy have a conserved norm! For a Maxwellian equilibrium, —0 foa /00 = foa/Ta, SO
this H is none other than W, (the electromagnetic version of) our free energy (4.19), and so it is
tempting to think of (5.35) as providing a natural generalisation of free energy to non-Maxwellian
plasmas.

In QG6, the results of this section are obtained in a more straightforward way, directly from the
Vlasov—Maxwell equations.

This style of thinking has been having a revival lately: see, e.g., the discussion of firehose and
mirror stability of a magnetised plasma in Kunz et al. (2015). Generalised energy invariants like
H are important not just for stability calculations, but also for theories of kinetic turbulence in
weakly collisional environments, e.g., the solar wind (see, e.g., Schekochihin et al. 2009).

5.2.3. Finite Perturbations

One might wonder at this point whether the condition (5.33) is fulfillable and also whether
anything can be done without assuming small perturbations. An answer to both questions is
provided by the following argument.

The realisation in §5.2.2 that our conserved quantity H is a generalisation of free energy
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nudges us in the direction of a particular choice of functions Gu(f«) and trial equilibria fiq,
fully inspired by conventional thermodynamics. Namely, in (5.25), let

2
Golfa) = Tafa (1 fa _ 1) fra = Caexp (f ”;,‘}Z ) : (5.36)

Q

where C, and T, are constants independent of space. It is then certainly true that G, (fea) =
—ea. It is also straightforward to show that the inequality (5.20) is always satisfied: essen-
tially, this follows from the fact that the Maxwellian distribution f., maximises entropy,
— ffdsr d3v fo In fo, subject to fixed energy, 1/T, being the corresponding Lagrange multiplier.

Exercise 5.9. Prove that if G, and f.q are given by (5.36), then
3 3 ’I”/LO/U2
A1) = Y [[dtrats |55 (o= o)+ Galfo) = Galfu)| 0 (530

for any values of C, and Ty.

Thus, Eq. (5.21) provides an upper bound on the energy of any electromagnetic fields that
can be extracted from any given initial distribution fo.. In order to make this bound as sharp as
possible, one picks the constants C and T, (and, therefore, determines f.o) so as to minimise
Alfo, f+] subject to constraints that cannot change: e.g., the number of particles of each species:

Co = ( ST ) / / d*r d®v foa. (5.38)

5.2.4. Anisotropic Equilibria

Let me give an example of the use of this scheme for deriving an upper bound on the energy
of unstable perturabtions for a case of an anisotropic initial distribution—the case that, at the
end of §5.1, I had to relegate to Q5 as it needed substantial extra work if it were to be handled
by the method developed there.

Consider a bi-Mazwellian distribution, a useful and certainly the simplest model for anisotropic
equilibria:

M\ 3/2 1 Mav? mavﬁ
o= D _ — — , 5.39
fo " ( 27T) TlaTl/Q oxp ( 2T o 2T« ( )
where T, and Tj, are the “temperatures” of particle motion perpendicular and parallel to
some special direction. Is this distribution unstable? (Yes: see Q3.) To obtain an upper bound

on the energy available for extraction from it, we substitute the distribution function (5.39) into
(5.36), use also (5.38), and find

T3/2 Tia 3
Alfo, f] = VZna (T 1nTL 75+ Tha+ =% = STa |- (5.40)
*dlja

This is minimised by T, = T2/3T1/

o s resulting in the following estimate of the available energy:*2

E(t) — £(0) < min Alfo, f.] = 4/2% ( Tro+ s Tjo — T2/3T1/3) (5.41)

3 lle

The bound is zero when T’ o, = T, and is always positive otherwise because it is the difference
between an arithmetic and a geometric mean of the two temperatures. We do not, of course, have
any way of knowing how good an approximation this is to the true saturated level of whatever

“?Helander (2017) shows that Gardner’s minimum-energy distribution f. for this case is a
Maxwellian (which, in general, it need not be) and so this estimate of the avaialble energy
coincides with Gardner’s K(0) — K. bound. This is an interesting, if perhaps somewhat
anomalous, example of a system “wanting” to go to a Maxwellian equilibrium even in the
absence of collisions.
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instability might exist here in any particular physical regime (if any),*® but this does hint rather
suggestively that temperature anisotropy is a source of free energy.

Further examples of such calculations can be found in Krall & Trivelpiece (1973, §9.14) and
Fowler (1968). A certain further development of the methodology discussed above allows one
to derive upper bounds not just on the energy of perturbations but also on their growth rates
(Fowler 1964, 1968).

6. Nonlinear Theory: Two Pretty Nuggets

Nonlinear theory of anything is, of course, hard—indeed, in most cases, intractable. These
days, an impatient researcher’s answer to being faced with a hard question is to outsource it to
a computer. This sometimes leads to spectacular successes, but also, somewhat more frequently,
to spectacular confusion about how to interpret the output. In dealing with a steady stream of
data produced by ever more powerful machines, one is sometimes helped by the residual memory
of analytical results obtained in the prehistoric era when computation was harder than theory
and plasma physicists had to find ingenious ways to solve nonlinear problems “by hand”—
which usually required finding ingenious ways of posing problems that were solvable. These
could be separated into two broad categories: interesting particular cases of nonlinear behaviour
involving usually just a few interacting waves and systems of very many waves amenable to some
approximate statistical treatment.** Here I will give two very pretty examples of the former,
before moving on to an extended presentation of the latter in §7 and onwards.

6.1. Nonlinear Landau Damping
Coming soon. See O'Neil (1965); Mazitov (1965).

6.2. Plasma Echo
Coming soon. See Gould et al. (1967); Malmberg et al. (1968).

7. Quasilinear Theory
7.1. General Scheme of QLT

In §§3 and 4, we discussed at length the structure of the linear solution corresponding to
a Landau-damped initial perturbation. This could be adequately done for a Maxwellian
plasma and we have found that, after some interesting transient time-dependent phase-
space dynamics, perturbations damp away and their energy turns into heat, increasing
somewhat the temperature of the equilibrium (see, however, Q9).

We now consider a different problem: an unstable (and so decidedly non-Maxwellian)
equilibrium distribution giving rise to exponentially growing perturbations. The specific
example on which we shall focus is the bump-on-tail instability, which involves generation
of unstable Langmuir waves with phase velocities corresponding to instances of positive
derivative of the equilibrium distribution function (Fig. 25). The energy of the waves
grows exponentially:

0| Ex|?
ot

3
TWse 1 Wpe
= 2mlBul’, = 55— (2] (7.1)

43Nominally, this calculation applies with equal validity to many different instabilities that can
be triggered by temperature anisotropy in both unmagnetised and magnetised plasmas—and
indeed also to some anisotropic distributions that can, in fact, be proved stable (which is common
in magnetised plasmas where the externally imposed magnetic field is sufficiently large).

“4The third kind is asking for general criteria of certain kinds of behaviour, such as stability or
otherwise—we dabbled in this type of nonlinear theory in §5.2.



64 A. A. Schekochihin
P FOs)

Unstable

Larlj muir waves
£ v Fle)>o

: . e
] ys———> v, VQ
t Pla{"Qa.u
tobe 'Eor‘menl

FIGURE 25. An unstable distribution with a bump on its tail.

where F(v,) = [dv, [dvy fo(v) [see (3.41)]. In the absence of collisions, the only way
for the system to achieve a nontrivial steady state (i.e., such that |Eg|? is not just zero
everywhere) is by adjusting the equilibrium distribution so that

=0 <& F’(w]‘;e) =0 (7.2)

at all k where |Eg|> # 0, say, k € [ko, k1]. If we translate this range into velocities,
v = wpe/k, we see that the equilibrium must develop a flat spot:

F'(v)=0 for v€ [v,v]= {wpe, wpe} . (7.3)
ki ko
This is called a quasilinear plateau (§7.4). Obviously, the rest of the equilibrium distri-
bution may (and will) also be modified in some, to be determined, way (§§7.6, 7.7).
These modifications of the original (initial) equilibrium distribution can be accom-
plished by the growing fluctuations via the feedback mechanism already discussed in
§2.3, namely, the equilibrium distribution will evolve slowly according to (2.11):

oy a§~[ e O
%= m A <g0kzk: 9 /- (7.4)

The time averaging here [see (2.7)] is over w ! < At < 7, 1
The general scheme of QLT is:

e start with an unstable equilibrium fjy,

e use the linearised equations (3.1) and (3.2) to work out the linear solution for the
growing perturbations ¢ and Jf in terms of fy,

e use this solution in (7.4) to evolve fy, leading, if everything works as it is supposed
to, to an ever less unstable equilibrium.

We keep only the fastest growing mode (all others are exponentially small after a
while), and so the solution (3.16) for the electric perturbations is

P = crel TR (7.5)

In the solution (4.23) for the perturbed distribution function, we may ignore the ballistic
term because the exponentially growing piece (the first term) will eventually leave all
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this velocity-space structure behind,*® so

(7iwk+mc)t a a
. q  Cke fo ¢ Dk fo
e =i L g0 _ 4 Yk 9o ‘
T Zm—iwk—l-’yk—i—ik-'v v mk-v—wg — iV ov (7.6)
Substituting the solution (7.6) into (7.4), we get
8fo 2. 1 dfo 0 dfo
_ 1 Y A YOO W L) .
Z okl SV — Wi — Yk ov ov (v) ov (7.7)

This is a diffusion equation in velocity space, with a velocity-dependent diffusion matrix

2
q . 2 1
D(v) = ——
(v) = o ikl
2 1 1
= q2 Zkk‘(pk,|2 <k: + k . >
- V-wp— it —kv—wp—iv g

here we changed
variables k — —k

_ 2l 1 _ 1
o m22k2| Kl (kzv Wi — ik k~vwk+ifyk)
1
_ Z B Byt
k-v—wr— iV

2 Vi
_ , 7.8
m2 Z k‘ v —we)? + 72 (7.8)

To obtain these expressions, we used the fact that the wave-number sum could just as
well be over —k instead of k and that w_g = —wgk, 7—k = V& [because p_k = ¢}, where
¢k 1s given by (7.5)]. The matrix D is manifestly positive definite—this adds credence to
our a priori expectation that a plateau will form: diffusion will smooth the bump in the
equilibrium distribution function.

The question of validity of the QL approximation is quite nontrivial and rife with subtle issues,
all of which I have swept under the carpet. They mostly have to do with whether coupling
between waves [the last term in (2.12)] will truly remain unimportant throughout the quasilinear
evolution, especially as the plateau regime is approached and the growth rate of the waves
becomes infinitesimally small. If you wish to investigate further—and in the process gain a finer
appreciation of nonlinear plasma theory,—the article by Besse et al. (2011) (as far as I know,
the most recent substantial contribution to the topic) is a good starting point, from which you
can follow the paper trail backwards in time and decide for yourself whether you trust the QLT.
I will revisit this topic in §7.8.

7.2. Conservation Laws

When we get to the stage of solving a specific problem (§7.3), we shall see that paying attention
to energy and momentum budgets leads one to important discoveries about the QL evolution of
the particle distribution. With this prospect in mind, as well as by way of a consistency check,
let us show that the quasilinear kinetic equation (7.7) conserves energy and momentum.

45See, however, Q9 on how to avoid having to wait for this to happen: in fact, the results below
are valid for vt <1 as well.
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7.2.1. Energy Conservation

The rate of change of the particle energy associated with the equilibrium distribution is

b ot o [ o
=— Z//ds'r d*vmav - Da(v) - agza

7 |Eki /s k-v 0 foa
= — I k-
Vzmaz d*v mk~v—wk—i’yk ov

add and substract
wk + 1Yk in the

numerator
| Ex|” : woa 1[5 1 8 foo
=-V —1 ——— [d k-
Xk: 4 m | (wk + i7) - k? ne vk-v—wk—i'yk ov

=1—e(—iwk + Yk, k) =1
because —iwg + ik is a solution of
dispersion relation € = 0

Ey|? d E?
= —VZ 27k| 8?r| =—— [&®*r =, qed, (7.9)
k

dt 8T
viz., the total energy K + fdgr E2/87r = const. This will motivate §7.6.

7.2.2. Momentum Conservation

Since unstable distributions like the one with a bump on its tail can carry net momentum, it
is useful to calculate its rate of change:

313 3. 13 E ‘afOQ

dt dtz//d rd vmavaQfZ//d rd 'vmav8 Da(v) o
= 72//d3r d3'vmaDa(v) . 852;1

g kiEk| / 3 1 0 foa
VZ Z d*vlmo— k)

V— Wk — Mk

k|Ek| Wha / 1 Ofon
VZ Im Z Vot e~ 0 aeds  (110)

=1—e(—iwk + v, k) =1

so momentum can only be redistributed between particles. This will motivate §7.7.

7.3. Quasilinear Equations for the Bump-on-Tail Instability in 1D

What follows is the iconic QL calculation due to Vedenov et al. (1962) and Drummond
& Pines (1962).

These two papers, published in the same year, are a spectacular example of the “great minds
think alike” principle. They both appeared in the Proceedings of the 1961 TAEA conference in
Salzburg, one of those early international gatherings in which the Soviets (grudgingly allowed
out) and the Westerners (eager to meet them) were telling each other about their achievements
in the recently declassified controlled-nuclear-fusion research. The entire Proceedings are now
online (http://www-naweb.iaea.org/napc/physics/FEC/1961.pdf)—a remarkable historical
document and a great read, containing, besides the papers (in three languages), a record of
the discussions that were held. The Vedenov et al. (1962) paper is in Russian, but you will
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FIGURE 26. Quasilinear plateau.

find a very similar exposition in English in the review by Vedenov (1963) published shortly
thereafter. Two other lucid accounts of quasilinear theory belonging to the same period are in
the books by Kadomtsev (1965) and by Sagdeev & Galeev (1969).

As promised in §7.1, we shall consider electron Langmuir oscillations in 1D, triggered
by the bump-on-tail instability, so k = k2, wr = wpe, & is given by (7.1), and the QL
diffusion equation (7.7) becomes

oF _ 0 . OF

5= (v)% , (7.11)

where F(v) is the 1D version of the distribution function, v = v, and the diffusion
coefficient, now a scalar, is given by

1
Z |Er)? Tm—————— | (7.12)
- kv

D(w) = -
() — Wpe — Yk

2
02
me

As we explained when discussing (7.1), if the fluctuation field has reached a steady
state, it must be the case that

0| Ex|”

50 =29 |ExP=0 & |Ex*=0 or 7, =0, (7.13)

i.e., either there are no fluctuations or there is no growth (or damping) rate. The result
is a non-zero spectrum of fluctuations in the interval k& € [ko, k1] and a plateau in the
distribution function in the corresponding velocity interval v € [v1, V2] = [Wpe/k1, Wpe/ k2]
[see (7.3) and Fig. 26]. The particles in this interval are resonant with Langmuir waves;
those in the (“thermal”) bulk of the distribution outside this interval are non-resonant.
We will have solved the problem completely if we find

FPlateat the value of the distribution function in the interval [vq,vs],

the extent of the plateau [vy,vs],

the functional form of the spectrum |E|? in the interval [ko, k1],

any modifications of the distribution function F(v) of the nonresonant particles.
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7.4. Resonant Region: QL Plateau and Spectrum

Consider first the velocities v € [v1, va] for which |Ej—,, /o |* # 0. If L is the linear size
of the system, the wave-number sum in (7.12) can be replaced by an integral according to

Z Z%/L 27r/dk (7.14)

Defining the continuous energy spectrum of the Langmuir waves®*®
L |E|?

W(k)=—— 7.15
(k) 2 A4m ( )

we rewrite the QL diffusion coefficient (7.12) in the following form:

21 4 42
D) = == Im/dk TWk) € 4 W(‘”pe) . (7.16)
m2 v k—wpe/v —iyk/v  m2 v v

The last expression is obtained by applying Plemelj’s formula (3.25) to the wave-number
integral taken in the limit vy, /v — +0.47 Substituting now this expression into (7.11) and
using also (7.1) to express

3 2
TWoe 1, /Wpe oF 2 k
_ F ( 7 e , 7.17
TSR Ne k ) = ov nge il ke /v ( )
we get
oF 0 €% 4m? w 2 k2 0 w w
or _ 9 & W( pe) LILI =9 Yre 5 Uw(pe). 7.18
ot Odvm?2 w v Twd, 1eTk ke / Ov mev3 Teope/ v (7.18)
= oW/t
Rearranging, we arrive at
0 0 w w
=P ey (22)] o 7.19
ot { 0v mev? v (7.19)

Thus, during QL evolution, the expression in the square brackets stays constant in time.
Since at t = 0, there are no waves, W = 0, we find

P
F(t,v) = F(0,v) + %%W(t, w;’)  pPlatean oy o (7.20)

In the saturated state (t — o0), W(wpe/v) = 0 outside the interval v € [v1,vs].
Therefore, (7.20) gives us two implicit equations for vy and wvs:

F(0,v1) = F(0,vy) = FPlateau (7.21)
and, after integration over velocities, also an equation for FPlateau.48
V2 1 V2
/ dv [FPiatear — P(0,0)] =0 = |FPlte = / dv F(0,v)]. (7.22)
V1 V2 — U1

46Why the prefactor is 1/4, rather than 1/87, will become clear at the end of §7.5.

47In fact, the wave-number integral must be taken along the Landau contour (i.e., keeping the
contour below the pole) regardless of the sign of vi: see Q9, where we work out the QL theory
for Landau-damped, rather than growing, perturbations.

48This is somewhat reminiscent of the “Maxwell construction” in thermodynamics of real gases:
the plateau sits at such a level that the integral under it, i.e., the number of particles involved,
stays the same as it was for the same velocities in the initial state; see Fig. 25.
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FIGURE 27. Quasilinear spectrum.

Finally, integrating (7.20) with respect to v and using the boundary condition
W (wpe/v1) = 0, we get, at t — oo,

3 v
@) — MmeV™ / plateau __ 1
W( : o / ' [F F(0,0)]. (7.23)
Hence the spectrum is
mer wpe/k
W(k) = Ee / dv [FP2e — B(0,0)] | for k€ Ype Lpe (7.24)
k3 )y, vy’ vy

and W (k) = 0 everywhere else (Fig. 27).

Thus, we have completed the first three items of the programme formulated at the
end of §7.3. What about the particle distribution outside the resonant region? How is
it modified by the quasilinear evolution? Is it modified at all? The following calculation
shows that it must be.

7.5. Energy of Resonant Particles

Since feeding the instability requires extracting energy from the resonant particles,
their energy must change. We calculate this change by taking the m.v?/2 moment
of (7.20):

mev?

Kres(oo) — Kres(o) = / dU [Fplateau _ F(O,v)]

v1
2 men? 0w w
— d e pe ( pe )
/ T e mev3 W v
—Wpe / dv wpe )

Wpe /1
= 7/ dk W (k 22 |E’“| = —2£(c0). (7.25)

Wpe /U2

Thus, only half of the energy lost by the resonant particles goes into the electric-field
energy of the waves,

Kres(o) - Kres(oo)
2
Since the energy must be conserved overall [see (7.9)], we must account for the missing

half: this is easy to do physically, as, obviously, the electric energy of the waves is their
potential energy, which is half of their total energy—the other half being the kinetic

E(o0) = (7.26)
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energy of the oscillatory plasma motions associated with the wave (Exercise 3.1 will help
you make this explicit). These oscillations are enabled by the non-resonant, “thermal-
bulk” particles, and so we must be able to show that, as a result of QL evolution, these
particles pick up the total of £(co) of energy—one might say that the plasma is heated.*”

7.6. Heating of Non-Resonant Particles

Consider the thermal bulk of the distribution, v < vy (assuming that the bump is
indeed far out in the tail of the distribution). The QL diffusion coefficient (7.12) becomes,
assuming now i, kv < wp. and using the last expression in Eq. (7.8),

D(v):£ZIE 2 Tk NéZ“E L
m2 e Mk —wpe)T 7 mE e Wl

- 62 18|Ek|2 - 47'['@2 EZ |£E‘]§|2 - 1 % (7 27)
miwg, =2 Ot - om2w?, dt — 8 " men, dt’ '

independent of v. The QL evolution equation (7.11) for the bulk distribution is then®°

oF _ 1 dgor
Ot men, dt Ov2’

(7.28)

Equation (7.28) describes slow diffusion of the bulk distribution, i.e., as the wave field
grows, the bulk distribution gets a little broader (which is what heating is). Namely, the
“thermal” energy satisfies

dKin d Mev? 1 d& mev? O?°F  dE
a dt / dv =3 Tan, At / dv (7.29)

2 Ov? dt

= MeMNe
(by parts twice)

Integrating this with respect to time, we find that the missing half of the energy lost by
the resonant particles indeed goes into the heating of the thermal bulk:

Kres 0) — Kres o)
Kin(00) — Kin(0) = E(o0) = ©) 5 () (7.30)
Overall, the energy is, of course, conserved:
Kin(00) + Kres(00) + E(00) = Kin(0) + Kres(0), (7.31)

as it shoud be, in accordance with (7.9).

Equation (7.28) can be explicitly solved: changing the time variable to 7 = £(t)/mene turns it
into a simple diffusion equation
or _oF
or ~ ov?’

(7.32)

49This is slightly loose language. Technically speaking, since there are no collisions, this is
not really heating, i.e., the exact total entropy does not increase. The “thermal” energy that
increases is the energy of plasma oscillations, which are mean “fluid” motions of the plasma,
whereas “true” heating would involve an increase in the energy of particle motions around the
mean.

5ONote that this implies dfdvF(v)/dt = 0, so the number of these particles is conserved, there
is no exchange between the non-resonant and resonant populations.
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F1cURE 28. The initial distribution and the final outcome of the QL evolution: its bulk hotter
and shifted towards the plateau in the tail.

Letting the initial distribution be a Maxwellian and ignoring the bump on its tail, the solution is

1)/2 (U _ 1)/)2

( ) , , e—(v—v/)2/47— 4 , Ne
FT,v:/dvFO,U 7:/1)7@@[———
0.9 VArT \/mvE ATT Ve 4t
2
v

Ne
= exp|———| . 7.33
m(v3,, + 47) P { VFe + 47] (7.33)
Since
2T, 4, 2 2
Uthe + 47 = " + n_2 {Te + ‘5(15)} , (7.34)
Me MeNe Me Ne

one concludes that an initially Maxwellian bulk stays Maxwellian but its temperature grows as
the wave energy grows, reaching in saturation

(7.35)

7.7. Momentum Conservation

The bump-on-tail configuration is in general asymmetric in v and so the particles in
the bump carry a net mean momentum. Let us find out whether this momentum changes.
Taking the mev moment of (7.20), we calculate the total momentum lost by the resonant
particles:

Pres(oo) - Pres(o) = / dv mev [Fplateau — F(O, ’U)]

vy
V2

0 w w
= [ dvmevs- Pty (2
o Ov mev v

vz ] Wpe
:_wpe/ dv$W< : )

1

wWpe /U1
- / ag VR (7.36)

Wpe /2 Wpe

This is negative, so momentum is indeed lost. Since it cannot go into electric field [see
(7.10)], it must all get transferred to the thermal particles. Let us confirm this.

Going back to the QL diffusion equation (7.28) for the non-resonant particles, at first
glance, we have a problem: the diffusion coefficient is independent of v and so momentum
is conserved. However, one should never take zero for an answer when dealing with
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asymptotic expansions—indeed, it turns out here that we ought to work to higher order
in our calculation of D(v). Keeping next-order terms in (7.27), we get

2 Vi e2 Vi 2kv
D)= — > |E? =— Y |Ef 1
(v) ng oo = o wge< P2
dre? Bl |~ HIE? 1 d / kW (k)
~ — | & dk ————=|. (7.37
miw?, dt ; Z Anwpe mene dt v Wpe ( )

Thus, there is a wave-induced drag term in the QL diffusion equation (7.11), which
indeed turns out to impart to the thermal particles the small additional momentum
that, according to (7.36), the resonant particles lose when rearranging themselves to
produce the QL plateau:

dPth B oF oF
5 /dvm vF = /dvme )(% me/dvD(v)%
/dk W (k i/dmaF d [ g KV (k) (7.38)
dt Wpe Ne ov  dt Wpe
whence, integrating and comparing with (7.36),
kW (k
Pun(o0) — Paa(0) = / dk w( ) Prs(0) = Pres(o9) | (7.39)
pe

This means that the thermal bulk of the final distribution is not only slightly broader
(hotter) than that of the initial one (§7.6), but it is also slightly shifted towards the
plateau (Fig. 28).

In a collisionless plasma, this is the steady state. However, as this steady state is
approached, vy, — 0, so the QL evolution becomes ever slower and even a very small
collision frequency can become important. Eventually, collisions will erode the plateau
and return the plasma to a global Maxwellian equilibrium—which is the fate of all things.

7.8. Validity of QLT

Coming soon. . .

7.9. QLT in the Language of Quasiparticles

I would like to outline here a neat way of reformulating the QL theory, which both
sheds some light on the meaning of what we have calculated and opens up promising
avenues for theorising about nonlinear plasma states.

Let us reimagine our system of particles and waves as a mixture of two interacting
gases: “true” particles (electrons) and quasiparticles, or plasmons, which will be the
“quantised” version of Langmuir waves. If each of these plasmons has momentum hk
and energy hwy, we can declare

V|Ey|? /4

N:
k hen

(7.40)

to be the mean occupation number of plasmons with wave number k (in a box of
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volume V). The total energy of the plasmons is then
E
S e =V 3 D = (7.41)

twice the total electric energy in the system (twice because it includes the energy of the
mean oscillatory motion of electrons within a wave; see discussion at the end of §7.5).
Similarly, the total momentum of the plasmons is

k|Ej|?
S hkNe =V k1 Be” (7.42)
k k

47TOJk

This is indeed in line with our previous calculations [see (7.39)]. Note that the role of A
here is simply to define a splitting of wave energy into individual plasmons—this can be
done in an arbitrary way, provided h is small enough to ensure N > 1. Since there is
nothing quantum-mechanical about our system, all our results will in the end have to be
independent of &, so we will use & as an arbitrarily small parmeter, in which it will be
convenient to expand, expecting it eventually to cancel out in all physically meaningful
relationships.

We may now think of the QL evolution (or indeed generally of the nonlinear evolution)
of our plasma in terms of interactions between plasmons and electrons. These are
resonant electrons; the thermal bulk only participates via its supporting role of enabling
oscillatory plasma motions associated with plasmons. The electrons are described by
their distribution function fy(v), which we can, to make our formalism nicely uniform,
recast in terms of occupation numbers: if the wave number corresponding to velocity v
is p = mev/h, then its occupation number is

np = (27rh> folv) = Z np = /d?’pnp—V/d?’vfo (v) =Vne. (7.43)

It is understood that n, < 1 (our electron gas is non-degenerate).

The QL evolution of the plasmon and electron distributions is controlled by two
processes: absorption or emission of a plasmon by an electron (known as Cherenkov
absorption/emission). Diagrammatically, these can be depicted as shown in Fig. 29. As
we know from §7.2, they are subject to momentum conservation, p = k + (p — k), and
energy conservation:

2,2 2 —k2 -k 2
Ozez—ek—s;_k:hp — hw _7i|p|:h<_w,c+hp _hk)

2Me k 2me Me 2me
= h(k - v —wk) + O(R?). (7.44)

This is the familiar resonance condition k - v — wg = 0. The superscripts e and [ stand
for electrons and (Langmuir) plasmons.
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(a) absorption of a plasmon by an electron (b) emission of a plasmon by an electron

FIGURE 29. Diagrams for (7.45).

7.9.1. Plasmon Distribution

We may now write an equation for the evolution of the plasmon occupation number:

ONg
5 =~ ; w(p—k,k— p)6(€;‘,7k + E%c — sg)np,ka
Fig. 29(a)
+ Z w(p = k,p— k)é(sz — Efc — Esz)np(Nk +1), (7.45)
P
Fig. 29(b)

where tv are the probabilities of absorption and emission and must be equal:
w(p—k,k—p) =wlp-—kp-—k)=wpk). (7.46)

The first term in the right-hand side of (7.45) describes the absorption of one of
(indistinguishable) Ny plasmons by one of np_j electrons, the second term desribes
the emission by one of ny, electrons of one of Ny + 1 plasmons. The +1 is, of course,
a small correction to Ni > 1 and can be neglected, although sometimes, in analogous

but more complicated calculations, it has to be kept because lowest-order terms cancel.
Using (7.46), (7.44) and (7.43), we find

e ~ w(p, k)o(ep, — b — €p—t)(Np — Np—k) Ni
p

- V/d3vw(mgv’k) 5(h(k - v —wy)) [fo(v) - fo(v - Z")] Ng

zV/d?’vw(m;Lv,k:) ;5(1@-1;—%)51@-?31\@

- L o(n ) ) o
= 27k

Note that h has disappeared from our equations, after being used as an expansion
parameter.

Since N o< |Eg|? [see (7.40)], the prefactor in (7.47) is clearly just the (twice) growth
or damping rate of the waves. Comparing with (7.1), we read off the expression for the
absorption/emission probability:

3
(mewpe ) . Wmewpe
)

hk T Vnek? (7.48)
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(a) emission of a plasmon by an electron (b) absorption of a plasmon by an electron

FIGURE 30. Additional diagrams for (7.49).

Thus, our calculation of Landau damping could be thought of as a calculation of this
probability. Whether there is damping or an instability is decided by whether it is
absorption or emission of plasmons that occurs more frequently—and that depends on
whether, for any given k, there are more electrons that are slightly slower or slightly
faster than the plasmons with wave number k. Note that getting the correct sign of the
damping rate is automatic in this approach, since the probability w must obviously be
positive.

7.9.2. FElectron Distribution

The evolution equation for the occupation number of electrons can be derived in a
similar fashion, if we itemise the processes that lead to an electron ending up in a state
with a given wave number p = m,v/h or moving from this state to one with a different
wave number. The four relevant diagrams are the two in Fig. 29 and the additional two
shown in Fig. 30. The absorption and emission probabilities are the same as before and
so are the energy conservation conditions. We have

on . .
a—tp = Ek:m(p —k,k—p)i(ep_p + 5%6 —ep)p—k Nk
Fig. 29(a)
+> w(p+k—k,p)i(ehy —ch — ep)npir(Ne + 1)
&
Fig. 30(a)
— Z w(p,k — p+k)i(ep, + 5L — €p1)p Nk
k
Fig. 30(b)
=Y w(p > kp — k)O(h — h — b )np(Ni + 1)
k
Fig. 29(b)

~> wp+ k. k)O(e5 k — el — €5) (Npik — np) Ni
k
- Z w(p, k)é(&; - 52 - E;—k)(np — np—k) Nk
k

1o} e 1 e on
k- o w(p, k)d(ep — ek — ep_i )k - a—pp Ny, (7.49)

2
-7
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where we have expanded twice in small k (i.e., in /). This is a diffusion equation in p
(or, equivalently, v = fip/m.) space. In view of (7.43), (7.49) has the same form as (7.7),
viz.,

dfo 0 dfo

20 _ 2 D) 20 )

o v P Gy (7.50)

where the diffusion matrix is

N, 2
Do) = kb Lt (R otk v ) = 550
k e

h
The last expression is identical to the resonant form of the QL diffusion matrix (7.8)
[cf. (7.16) and (10.86)]. To derive it, we used the definition (7.40) of Nj and the
absorption/emission probability (7.46), already known from linear theory.

Thus, we are able to recover the (resonant part of the) QL theory from our new
electron-plasmon interaction approach. There is more to this approach than a pretty
“field-theoretic” reformulation of already-derived earlier results. The diagram technique
and the interpretation of the nonlinear state of the plasma as arising from interactions
between particles and quasiparticles can be readily generalised to situations in which
the nonlinear interactions in (2.12) cannot be neglected and/or more than one type of
waves is present. In this new language, the nonlinear interactions would be manifested
as interactions between plasmons (rather than only between plasmons and electrons)
contributing to the rate of change of Nj. There are many possibilities: four-plasmon
interactions, interactions between plasmons and phonons (sound waves), as well as
between the latter and electrons and/or ions, etc. Some of these will be further explored
in §9 and onwards. A comprehensive monograph on this subject is Tsytovich (1995) (see
also Kingsep 2004, which is a much more human-scale exposition, although it is only
available in the original Russian).

€ k

I have introduced the language of kinetics of quasiparticles and their interactions with “true”
particles as a reformulation of QLT for plasmas. The method is much more general and originates,
as far as I know, from condensed-matter physics, the classic problem being the kinetics of
electrons and phonons in metals—the founding texts on this subject are Peierls (1955) and
Ziman (1960).

This is a good place to stop these lectures, although it is not, of course, the end of plasma
kinetics: weak and strong turbulence theory, magnetised plasma waves, “drift kinetics”
and “gyrokinetics”—there are vast expanses of interesting physics and interesting theory
to explore beyond this basic introduction. Some of these topics are covered by Parra
(2018b) and others call for further reading, e.g., some good reads on gyrokinetics are
Howes et al. (2006), Abel et al. (2013); on turbulence: Kadomtsev (1965), Sagdeev &
Galeev (1969), Krommes (2015)—or read on!

8. Collisionless Relaxation
8.1. QLT and Beyond
8.2. QL Relazation and Effective Collisionality
8.2.1. Lenard—Balescu Collision Integral
See Adkins (2018)

8.2.2. Kadomtsev—Pogutse Collision Integral
See Kadomtsev & Pogutse (1970); Adkins (2018)
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8.3. Quasinonlinear Theory a la Dupree
See Kadomtsev & Pogutse (1971); Dupree (1972); Diamond et al. (2010); Adkins (2018)

8.4. Stochastic Echo and Phase-Space Turbulence
See Adkins & Schekochihin (2018).

9. Weak Turbulence
9.1. WT in the Language of Quasiparticles

Work in progress. See books by Zakharov et al. (1992); Tsytovich (1995); Kingsep
(2004); Nazarenko (2011).

9.2. General Scheme for Calculating Probabilities in WT
10. Langmuir Turbulence
10.1. Electrons and Ions Must Talk to Each Other
10.2. Zakharov’s Equations

10.3. Derivation of Zakharov’s Equations

Here I provide a systematic perturbative derivation of the Zakharov (1972) equations, which
is surprisingly difficult to find in the literature.

10.3.1. Scale Separations
The problem has four characteristic timescales: the plasma oscillation frequency, the electron
streaming rate, the ion sound frequency and the ion streaming rate:
Wpe > kvthe > kcs ~ kvgng, (10.1)

where Viha = (2Ta/ma)1/2 and ¢cs = (Te/mi)l/Q. The relative size of these frequencies is
controlled by the following three independent parameters:
kvtne kes Me kvgn; T;

~ kApe < 1, 1, S 10.2
Wpe pe < kvthe m; < kes T ( )

The scale separation between ions and electrons is non-negotiable as the mass ratio is always
small. As long as kApe < 1, which we will assume here, the electron Landau damping is
exponentially small and the electrons will be fluid (as we will see shortly; it is no surprise, given
what we know from §3.5). Ions too behave as a fluid if they are cold (T3 < Te; cf. §3.8), which
is the limit most often considered in the context of Zakharov’s equations, if not necessarily one
that is most relevant physically.

10.3.2. Electron kinetics and ordering
We split the electron distribution function and the electrostatic potential into two parts: the

time-averaged (“slow”, denoted by overbars) and fluctuating (“fast”, denoted by overtildes):
fe:fe+f67 =0+ (10.3)
The time average is taken over time scales longer than both wgel and (kvthe)fl but shorter

than (kcs) ™! or (kveni) ™, i.e., fo and @ are the electron distribution and potential that the ions
will “see”. The slow part of the electron distribution is assumed to consist of a homogeneous
Maxwellian equlibrium (4.6) and a perturbation:

f€:f0€+6fe- (104)

The slow and fast distribution functions satisfy the following equations, which are obtained
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by time averaging the Vlasov equation (1.50) for electrons (a = e, ¢ = —e) and subtracting
the average from the exact equation:

_ e . Of. e -y Bfe _
v Vet =(VR) 5o+ -(VE) 50 =0, (10.5)

8fe . ; € =\ 8fTe € - 8fe € =y 3fe o
ot tv-Viest Me (Vo) ov + Me (Vo) ov + Me (Vo) ov 0, (10.6)

where all time evolution on ion scales is neglected. The slow and fast parts of the Poisson
equation (1.51) are

—V°’@ = 4re(Zdn; — 6n.) = 4me (Z/d% of: — /d% 5fe> , (10.7)
—V2p = —dren, = —47re/d3v fe, (10.8)

where Jf; is the perturbed ion distribution function and én; its density. We shall solve (10.6)
and (10.8) for ¢ and fe, use that to calculate the last term in (10.5), which will give rise to an
average effect of the fast oscillations known as the poderomotive force, then solve (10.5) for fe
in terms of @, and finally use that solution in (10.7) to get an expression for @ in terms of f;.
The latter can then be coupled with the ion Vlasov—Landau equation (4.1) (a = i, ¢o = Ze),
giving rise to a closed “hybrid” system for kinetic ions and “fluid” electrons.

In order to implement this plan, we carry out a perturbation expansion of the above equations
in the small parameter

£ = kApe. (10.9)

The algebra becomes more compact if we first make the following ansatz, designed to remove
the third (the largest, as we will see) term in (10.6)°!:

.

fo=— h 10.10
f w- 5=+ h (10.10)
where u is, by definition, the velocity associated with the plasma oscillation:

ou e

- = V. 10.11

5~ m. VP (10.11)

Then (10.6) becomes

8h—v~V<u-8fe)—'u-Vh+WeL (V@)-glrafe— c (V@)-%

ot ov e ov ov  me ov
—_——
2 g e* g’
e ~/\5 of. e _. Oh
G2t B s o B CURE)
g2 g3

where we have indicated the ordering of each term in the small parameter (10.9), based on the
following assumptions. The plasma-oscillation velocity (10.11) is

led -
v Y ke~ (10.13)
Uthe MeVtheWpe Te
if, in general,
ep
—— ~ 10.14
T (10.14)

!This is equivalent to splitting the electron distribution function into fast and slow parts using
as the velocity variable of f. the peculiar velocity of the particle around a centre oscillating with
velocity u (cf. DuBois et al. 1995): namely, set fe = fe(r,v —u(t,r)) + h(t,r,v) and expand in
small u.
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Anticipating that the ponderomotive “potential” will enter on equal footing with the slow
potential and that the slow perturbed electron distribution will express the Boltzmann response
to the latter modified by the former, we mandate the ordering

~\ 2
R R (k,\De)Z(%) ~ e, (10.15)
e e eWpete

Te

Since the inhomogeneous terms in (10.12) are, thus, O(g?), it follows that h ~ &2 fo. and, since
the first term in (10.10) has no density moment, 7ie ~ £°nge.
From (10.12), to lowest order,

oh? 8 foe D Ofoe
o~ vV 8v+8t v oo
2 2005\ Ou;
= —K [vivjc‘)iuj + (5” . Ugh:) ot U,j:| foe, (10.16)

where we have used (10.11) and the fact that fo. is a Maxwellian.

10.3.3. Ponderomotive response

With (10.16) in hand, we are now in a position to calculate the last term in (10.5). First,
using (10.10) and (10.11) and keeping terms of order ¢* and &,

¢ ~.8f5_87u.£ _ fOe @)
me(V(p) ov Ot 81)( th

. i o 2’Uﬂ]j 8uiu_f i 87'111 ) Oh(2)
T2 Y 02, ) ot Tt T ow
0 2 [u?2  (u-v)? 8h(2) 0 Oh®
ot {vthe { 2 02, } Joe + w | " ov ot (1017)

The first term is a full time derivative and so vanishes under averaging, whereas the second term
can be calculated using (10.16):

(2) 2 2005
— 8 8h = 5 {vjulaluj + uiul&-ul — Mulc’)iuj
8v ot Uthe Uthe
_ 2 vu%u-—i—v-u Lu; —l—vuauu QUinwuauiu- fi
ghe ul 3t 7 JWl 5 at J Wl 875 L — ’Ughe l at J Oe
2 L a9)2
— 22 u-Vu-v+v- V{u (uQv)}
the 2 Uthe
2 0|, 2(u-v)?
UtQhe at [u v 3v t2he foe
u? u-v)?
2o [ ], 10.15)
the the

The last expression was obtained after noticing that any full time derivative vanishes under
averaging and that, u defined by (10.11) being a potential field, we could rewrite u - Vu =
Vul?/2.

Note that (10.18) is O(£?), as are the other two terms in (10.5). Inserting (10.18) into (10.5),
we obtain the following solution for the slow part of the perturbed elecron distribution:

of. = {ET*O 2{“2—2 - (“"’) ]}fOe (10.19)

Vthe vthe

The first term is the Boltzmann response, the second the ponderomotive one. The resulting
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electron density perturbation is

e e u?
== — —. 10.20
Noe Te Ut2he ( )

10.3.4. Electron fluid dynamics

In order to obtain the evolution equation for ¢, we will need to solve (10.12), coupled to (10.8),
to higher order than the lowest, namely, up to €*. Rather than solving the kinetic equation (10.12)
order by order, it turns out to be a faster procedure to take moments of it exactly and then

close the resulting hierarchy by calculating the second moment using R given by (10.16).
The zeroth (density) moment of (10.12) is

One
ot

+ V- (mu)+v-/d3mh:0, (10.21)

the continuity equation. The first moment is

e

7. VG +

%/dB’vvh: fV-/dBv(qurvu)fefV'/dg’vm;th = fL/C_V\_/gZ) (10.22)
Me

Me
The first term on the right-hand side is zero to all orders up to at least e? because, according
to (10.19), fe is even in v up to second order. The remaining terms are O(g?), except the
penultimate one, which is O(¢”) and can be safely dropped. Combining (10.21) with (10.22) and
using (10.11), we have

e

2~
a”€+v.( © ﬁeVgZ)—VV:/dvavh—i—V-(
Me m

ot?

ﬁ/ﬁfa) =0. (10.23)

This equation is valid up to and including terms of order &*.

Note that, in order to maintain this level of precision, we need to keep the lowest-order
contribution to & in the second velocity moment. This satisfies (10.16), which it is now convenient
to rewrite as

or? 2 8 (u?  wiuviv;
=2 \vwibu; + = [ — — 2T .. 10.24
e =i o+ 5 (5 - )| 021
The stress tensor satisfies
2
% d3’U ’l}i’l)jh = _ 10cUthe (&-uj + 6]"114' + 5ijV . u) + %noeuiuj. (10.25)
Therefore,
0 3 3 2 oo 0
e VV: [ dvvvh | = —§vthEV V - (noeu) + anOEVV fuu. (10.26)

From (10.21), to lowest order, V- (no.u) = —9n. /0t and so the above equation can be integrated
in time:

\AVE /d% voh = gvfhev%e +n0.VV : wu. (10.27)
Inserting (10.27) into (10.23) and using also (10.8) to express 7. via ¢, we obtain

0? 2 Me

2 V4V @WHV@) _ 302 VG = dreno.VV i — W - { €

o > (VQ/@)VV@} . (10.28)

Me
The left-hand side of this equation manifestly describes Langmuir waves with the usual disper-
sion relation w? = w?,+3k*v3,. /2 [see (3.39)]. Note that, since fie = noe+07., the second term on
the left-hand side contains the nonlinear “modulational interaction”: the Langmuir waves have
the plasma frequency that is locally modified by the slow variation of electron density, given by
(10.20) (which depends on the mean energy of the Langmuir waves themselves and also brings
in ion dynamics). The terms on the right-hand side of (10.28) are nonlinear interactions between
Langmuir waves, which will disappear in a moment.

There are manifestly two frequency scales in (10.28): wpe and kvghe ~ ewpe. These can now
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separated in the following way. Let

1 A .
B = 5 (wef“*’pet + ,(/)*e“*’pet) , (10.29)
where 1) varies on the time scale (kvine) ™ *. From (10.11), to lowest order in &,
u=i——V (we*“”wt - w*e”wt) . (10.30)
2Mewpe

Substituting these expressions into (10.28), neglecting 07¢ < iwpeOst, dividing through by

—wpee” "WPe

Zakharov’s first equation:

and averaging out the oscillatory terms with frequencies wp. and 2wp., we obtain

_ Ofie
\'& (z 10w 3 DAY w) = V~( i Vw) (10.31)
ot no
Finally, substituting (10.30) into (10.20), we have, for the slow density perturbation,
one _ ep |Vy[?
= _ . 10.32
Noe Te  16mnoele (10.32)

To get @, we need to bring in the ions.

10.3.5. Ion kinetics

Since the left-hand side of the slow Poisson equation (10.7) is O(e?), while the right-hand side

is O(e?), (10.7) predictably turns into the quasineutrality equation
e = Z6n;. (10.33)
Combined with (10.32), this becomes
ep _ VP 1 5 oo
T = Toene s e | Ao (10.34)

where 1 obeys (10.31). The ion distribution function f; = fo; + Jf; is found from the ion Vlasov—
Landau equation (4.1) with the slow potential @:

ofi Ze o Ofi _ (0fi
or POV (VO 5y = < ot ).

Together with (10.31), (10.35) and (10.34) make up a closed hybrid system describing kinetic ions
and fluid electrons. The electrons affect the ions via the ponderomotive nonlinearity in (10.34),
while the ions modulate the plasma frequency and thereby the dynamics of the electrons.

(10.35)

10.3.6. Ion fluid dynamics

For completeness, let us show how ions can become fluid, giving rise to the second equation
in the classic Zakharov (1972) system.
The zeroth and first moments of (10.35) are

ot

gt/d%v&fz +V. /dg'vvvéfz =

+V- /d% vifi =0, (10.36)

In; |Vi|?

no4 1671’7L05Te

V@ =—c2n;V ( ) . (10.37)

where ¢s = (Z7Te /mi)l/ 2 is the sound speed and the last expression was obtained with the aid
of (10.34). Combining these two equations and keeping only the lowest-order terms, both in e
and in T; /7., which is now assumed small so as to allow us to neglect the ion pressure (stress)
tensor in the left-hand side of (10.37), we get

2 _

Noe
This is Zakharov’s second equation, describing sound waves excited by the ponderomotive force.

Vo[

—_ . 10.38
167rn05T6 ( )
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We have replaced dn;/no; with d7ie /noe (by quasineutrality) to emphasise that the Zakahrov
equations (10.31) and (10.38) are a closed system.

When the ions are not cold (T;/Te not small), (10.38) regains the ion pressure term, via which
it couples to the rest of the moments of df;. This is a dissipation channel for the sound waves,
via Landau damping, at a typical rate ~ kvgn;.

10.4. Secondary Instability of a Langmuir Wave
See Thornhill & ter Haar (1978), §3.

10.4.1. Decay Instability
10.4.2. Modulational Instability
10.5. Weak Langmuir Turbulence
See Zakharov (1972); Kingsep (2004).

10.6. Langmuir Collapse
See Zakharov (1972).

10.7. Solitons and Cavitons
See Thornhill & ter Haar (1978).

10.8. Kingsep—Rudakov—Sudan Turbulence
See Kingsep et al. (1973).

10.9. Pelletier’s Equilibrium Ensemble
See Pelletier (1980).

10.10. Theories Galore
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Plasma Kinetics Problem Set

1. Industrialised linear theory with the Z function. Consider a two-species plasma
close to Maxwellian equilibrium. Rederive all the results obtained in §§3.4, 3.5, 3.8, 3.9,
3.10 (including the exercises) starting from (3.80) and using the asymptotic expansions
(3.87) and (3.88) of the plasma dispersion function.

Namely, consider the limits (. > 1 or (¢ < 1 and (; > 1, find solutions in these
limits and establish the conditions on the wave number of the perturbations and on the
equilibrium parameters under which these solutions are valid.

In particular, for the case of (, < 1 and (; > 1, obtain general expressions for the
wave frequency and damping without assuming kAp. to be either small or large. Recover
from your solution the cases considered in §§3.8-3.9 and §3.10.

Find also the ion contribution to the damping of the ion acoustic and Langmuir waves
and comment on the circumstances in which it might be important to know what it is.

Convince yourself that you believe the sketch of longitudinal plasma waves in Fig. 14. If
you feel computationally inclined, solve the plasma dispersion relation (3.80) numerically
[using, e.g., (3.86)] and see if you can reproduce Fig. 14.

You may wish to check your results against some textbook: e.g., Krall & Trivelpiece
(1973) and Alexandrov et al. (1984) give very thorough treatments of the linear theory
(although in rather different styles than I did).

2. Transverse plasma waves. Go back to the Vlasov—Maxwell, rather then Vlasov—
Poisson, system and consider electromagnetic perturbations in a Maxwellian unmagne-
tised plasma (unmagnetised in the sense that in equilibrium, By = 0):

0fa . Ga vx B\ 9foa _
o +zk~v5fa+ma(E+ y ) S =0, (10.39)

where E and B satisfy Maxwell’s equations (1.23-1.26) with charge and current densities
determined by the perturbed distribution function Jf,,.

(a) Consider an initial-value problem for such perturbations and show that the equation
for the Laplace transform of E can be written in the form®?

R - . terms associated with initial
€p. k) - B(p) = < perturbations of df,, E and B ) ’ (10-40)
where the dielectric tensor é(p, k) is, in tensor notation,
kik; kik;
Eij(p, k) = <5ij - k2j> ETT(p, k) + kQJ ELL(p7 k) (10.41)

and the longitudinal dielectric function epr(p, k) is the familiar electrostatic one, given
by (3.80), while the transverse dielectric function is

1
err(p, k) =1+ o k*c? — wa,a(:aZ(Ca) . (10.42)

52In O3, dealing with the Weibel instability, you will have to do essentially the same calculation,
but with a non-Maxwellian equilibrium. To avoid doing the work twice, you could do that
question first and then specialise to a Maxwellian fo. However, the algebra is a bit hairier for
the non-Maxwellian case, so it may be useful to do the simpler case first, to train your hand—and
also to have a way to cross-check the later calculation.
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(b) Hence solve the transverse dispersion relation, epr(p, k) = 0, and show that, in
the high-frequency limit (|(.| > 1), the resulting waves are simply the light waves,
which, at long wave lengths, turn into plasma oscillations. What is the wave length
above which light can “feel” that it is propagating through plasma?—this is called the
plasma (electron) skin depth, d.. Are these waves damped?

(¢) In the low-frequency limit (|¢.| < 1), show that perturbations are aperiodic (have
zero frequency) and damped. Find their damping rate and show that this result is valid for
perturbations with wave lengths longer than the plasma skin depth (kd. < 1). Explain
physically why these perturbations fail to propagate.

Do either Q3 or Q4.

3. Weibel instability. Weibel (1958) realised that transverse plasma perturbations can
go unstable if the equilibrium distribution is anisotropic with respect to some special
direction 7, namely if foo = foa(vi,v)), where vy = v-n, vy = |vi| and vy =
v — v . The anisotropy can be due to some beam or stream of particles injected into the
plasma, it also arises in collisionless shocks or, generically, when plasma is sheared or non-
isotropically compressed by some external force. The simplest model for an anisotropic
distribution of the required type is a bi-Mazwellian®?

2 U2
foo =~ exp (-”l - 2') , (10.43)

3/2,,2 2
T3/20% | o Vtna Ythia  Yth|a

where, formally, vihia = /271 a/Ma and vehja = /27T)a/Ma are the two “thermal

speeds” in a plasma characterised by two effective temperatures 7', and T}, (for each
species).

(a) Using exactly the same method as in Q2, consider electromagnetic perturbations
in a bi-Maxwellian plasma, assuming their wave vectors to be parallel to the direction
of anisotropy, k || . Show that the dielectric tensor again has the form (10.41) and
the longitudial dielectric function is again given by (3.80), while the transverse dielectric
function is

6TT(pv k) =1 +

K262 4 pra (1 ~ T|L|a [1+¢aZ (Ca)]ﬂ : (10.44)

(b) Show that in one of the tractable asymptotic limits, this dispersion relation has a
zero-frequency, purely growing solution with the growth rate
kvje Tje
= A, — k*d? 10.45
’y \/* TLe ( e e) ) ( )
where A, = Ty ./T). — 1 is the fractional temperature anisotropy, which must be positive
in order for the instability to occur. Find the maximum growth rate and the corresponding
wave number. Under what condition(s) is the asymptotic limit in which you worked
indeed a valid approximation for this solution?

5In Q5, you will need the dielectric tensor in terms of a general equilibrium distribution
foa(Vz, vy, vz). If you are planning to do that question, it may save time (at the price of a
very slight increase in algebra) to do the derivation with a general fo, and then specialise to
the bi-Maxwellian (10.43). You can check your algebra by looking up the result in Krall &
Trivelpiece (1973) or in Davidson (1983).
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(c) Are there any other unstable solutions? (cf. Weibel 1958)
(d) What happens if the electrons are isotropic but ions are not?

(e**) If you want a challenge and a test of stamina, work out the case of perturbations
whose wave number is not necessarily in the direction of the anisotropy (k x i # 0). Are
the k || 7 or some oblique perturbations the fastest growing? This is a lot of algebra,
so only do it if you enjoy this sort of thing. The dispersion relation for this general case
appears to be in the Appendix of Ruyer et al. (2015), but they only solve it numerically;
no one seems to have looked at asymptotic limits. This could be the start of a dissertation.

4. Two-stream instability.®* Consider one-dimensional, electrostatic perturbations in
a two-species (electron-ion) plasma. Let the electron distribution function with respect
to velocities in the direction (z) of the spatial variation of perturbations be a “double
Lorentzian” consisting of two counterpropagating beams with velocity u, and width vy,

viz.,

NeVh 1 n 1
20 (v, —up)?+ 02 (vs +up)? + v
(see Fig. 12b), while the ions are Maxwellian with thermal speed vp; < up,. Assume also

that the phase velocity (p/k) will be of the same order as up and hence that the ion
contribution to the dielectric function (3.26) is negligible.

Fe(vz) = (1046)

(a) By integrating by parts and then choosing the integration contour judiciously, or
otherwise, calculate the dielectric function €(p, k) for this plasma and hence show that
the dispersion relation is

ot + (2u} + vg)a2 +ud (uf —v?) =0, (10.47)
where 0 = v, + p/k and v, = wpe/k.

(b) In the long-wavelength limit, viz., k < wpe/up, find the condition for an instability
to exist and calculate the growth rate of this instability. Is the nature of this instability
kinetic (due to Landau resonance) or hydrodynamic?

(c) Consider the case of cold beams, v, = 0. Without making any a priori assumptions
about k, calculate the maximum growth rate of the instability. Sketch the growth rate
as a function of k.

(d) Allowing warm beams, vy, > 0, show that the system is unstable provided

2 _ .2

u? —v
> d k< wpeYts2—b. 10.48
up > v an Wpe @ ( )

What is the effect that a finite beam width has on the stability of the system and on the
kind of perturbations that can grow?

In §5.1.3, you might find it instructive to compare the results that you have just obtained by
solving the dispersion relation (10.47) directly with what can be inferred via Penrose’s criterion
and Nyquist’s method.

5¥ Criterion of instability of anisotropic distributions. This is an independent-
study topic. Consider linear stability of general distribution functions to electromagnetic
perturbations and work out the stability criterion in the spirit of §5.1. You should discover

54This is based on the 2019 exam question.
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that anisotropic distributions such as (10.43) tend to be unstable. Krall & Trivelpiece
(1973, §9.10) would be a good place to read about it, but do range beyond.

6. Free energy and stability. (a) Starting from the linearised Vlasov—Poisson system
and assuming a Maxwellian equilibrium, show by direct calculation from the equations,
rather then via expansion of the entropy function and the use of energy conservation (as
was done in §4.2), that free energy is conserved:

d T.0f2  |Vl?
dt/d%[ /d3 2f0£ | 8?' ] = 0. (10.49)

This is an exercise in integrating by parts.

(b) Now consider the full Vlasov—Maxwell equations and prove, again for a Maxwellian
plasma plus small perturbations,

Tadfs  |BP+|BP| _
/d3 [Z/d?’ e T e ]_0 : (10.50)

(¢) Counsider the same problem, this time with an equilibrium that is not Maxwellian,
but merely isotropic, i.e., foa = foa(v), or, in what will prove to be a more convenient
form,

fOoc = fOoz(ga)a (1051)

where £, = mav?/2 is the particle energy. Find an integral quantity quadratic in
perturbed fields and distributions that is conserved by the Vlasov—Maxwell system under
these circumstances and that turns into the free energy (10.50) in the case of a Maxwellian
equilibrium (if in difficulty, you will find the answer in, e.g., Davidson 1983 or in Kruskal
& Oberman 1958, which appears to be the original source). Argue that

8fOoz
Oey

is a sufficient condition for stability of small (df, < foa, but not necessarily infinitesimal)
perturbations in such a plasma.

<0 (10.52)

7. Fluctuation-dissipation relation for a collisionless plasma. Let us consider a
linear kinetic system in which perturbations are stirred up by an external force, which we
can think of as an imposed (time-dependent) electric field Eox; = —Vx. The perturbed
distribution function then satisfies

0dfa Ga 0 foa
ot +v-Vify — . (V(ptot) v

where @0t = @ + x is the total potential, whose self-consistent part, ¢, obeys the usual
Poisson equation

=0, (10.53)

V=41 qa /d3v f (10.54)
and the equilibrium fy, is assumed to be Maxwellian.

(a) By considering an initial-value problem for (10.53) and (10.54) with zero initial
perturbation, show that the Laplace transforms of (it and x are related by

X(p)
Prot (p) = ) (10.55)
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where ¢(p) is the dielectric function given by (3.80).
(b) Consider a time-periodic external force,
x(t) = xoe ™ot (10.56)

Working out the relevant Laplace transforms and their inverses [see (3.14)], show that,
after transients have decayed, the total electric field in the system will oscillate at the
same frequency as the external force and be given by

X0 e*i(.d(]t

Prot(t) = e(ia) (10.57)

(¢) Now consider the plasma-kinetic Langevin problem: assume the external force to
be a white noise, i.e., a random process with the time-correlation function
(X)X () =2Ds(t - t). (10.58)

Show that the resulting steady-state mean-square fluctuation level in the plasma will be

+oo w
<|(Ptot(t)|2>:$/_ IE(flT)IQ : (10.59)

This is a kinetic fluctuation-dissipation relation: given a certain level of external stirring,
parametrised by D, this formula predicts the fluctuation energy in terms of D and of the
internal dissipative properties of the plasma, encoded by its dielectric function.

(d) For a system in which the Landau damping is weak, |y| < kviha, calculate the
integral (10.59) using Plemelj’s formula (3.25) to show that

1 [ORee(—iw)] >
w(®)|?) =D —_— = , 10.60
e ®) =P o |75 (10.60)
where p; = —iw; + y; are the weak-damping roots of the dispersion relation.

Here is a reminder of how the standard Langevin problem can be solved using Laplace transforms.
The Langevin equation is

d¢
o Tre=x®)], (10.61)
ot
where ¢ describes some quantity, e.g., the velocity of a Brownian particle, subject to a damping
rate v and an external force x. In the case of a Brownian particle, x is assumed to be a white

noise, as per (10.58). Assuming ¢(t = 0) = 0, the Laplace-trasform solution of (10.61) is

x(p)

p(p) = =——=. 10.62

olr) = X2 (10.62
Considering first a non-random oscillatory force (10.56), we have

Up)= [ dtePix(t)=—X"— = gp)=—20 10.63

= [ =X s )= ot (106)

The inverse Laplace transform of ¢ is calculated by shifting the integration contour to large

negative Rep while not allowing it to cross the two poles, p = —v and p = —iwp, in a manner

analogous to that explained in §3.1 (Fig. 5) and shown in Fig. 31. The integral is then dominated
by the contributions from the poles:

1 0040 e*iwot 67'yt X0 e*iWOt
t) = — dp Pt = ( - + . )—) - as t— 0o,
o) =5 - /_mw p e o(p) = xo Tio iy T Ty T im ——
(10.64)
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FIGURE 31. Shifting the integration contour in (10.64).

which is quite obviously the right solution of (10.61) with a periodic force (the second term in
the brackets is the decaying transient needed to enforce the zero initial condition).
In the more complicated case of a white-noise force [see (10.58)],

(%) = o <\ [ e X >

/+OO dw /+OO dw'e [—i(w—w’)+20]t <A(_7;w + U) A*( —iw’ + U)> (10.65)
27r (—iw+o+7)(iw +0+7)’
where we have changed variables p = —iw + o and similarly for the second integral. The

correlation function of the Laplace-transformed force is, using (10.58),

<>Z(p)>2*(p')> :/ dt/ dtle—pt—p/*y <X(t)X*(t/)> _ 2D/ dte_(p"'p/*)t _ 2D ’
0 0 0

p+p*
(10.66)
provided Rep > 0 and Rep’ > 0. Then (10.65) becomes
D +o0 +oo e[*i(wfw')+20]t
o) = 55 [ du / R
t(w—w)+20] (—iw+ o+ 7)(Ww +0+7)
D +<><> (zw +o)t 1 ico+o ept
T
(i +0+7)2mi ) jooio (P+ i +0)(p+7)
D +oo (tw +o‘)t 7(iw'+0)t —~t
_ / € = = , (10.67)
(w+oc+7) |—iw —c+y y+iw' +o

where we have reverted to the p variable in one of the integrals and then performed the
integration by the same manipulation of the contour as in (10.64). We now note that, since
there are no exponentially growing solutions in this system, ¢ > 0 can be chosen arbitrarily
small. Taking ¢ — 40 and neglecting the decaying transient in (10.67), we get, in the limit

t — oo,
D [T dw’ D [t du D
D2y == - == _— = . 10.68
ol =2 [ —m = ot (10.68)

Note that, while the integral in (10.68) is doable exactly, it can, for the case of weak damping,
also be computed via Plemelj’s formula.

Equation (10.68) is the standard Langevin fluctuation-dissipation relation. It can also be
obtained without Laplace transforms, either by directly integrating (10.61) and correlating o(¢)
with itself or by noticing that

% <“02> +9(p%) = (x(®) () = <X(t)/0 dt’ [—ye(t') + x(t’)}> - D, (10.69)

where we have used (10.58) and the fact that (x(¢)o(t')) = 0 for ¢ < ¢, by causality.
Equation (10.68) is the steady-state solution to the above, but (10.69) also teaches us that,
if we interpret (p?)/2 as energy, D is the power that is injected into the system by the external
force. Thus, fluctuation-dissipation relations such as (10.68) tells us what fluctuation energy will
persist in a dissipative system if a certain amount of power is pumped in.
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8! Phase-mixing spectrum. Here we study the velocity-space structure of the per-
turbed distribution function Jf derived in Q7.

In order to do this, we need to review the Hermite transform:

_1 Hop (u)of (v2) _ v _pymoz 47 w2
Ofm = . dv, N U= Hy(u) =(—1)"e € (10.70)

where H,, is the Hermite polynomial of (integer) order m. We are only concerned with the v,
dependence of §f (where z, as always, is along the wave number of the perturbations—in this
case set by the wave number of the force); all v, and v, dependence is Maxwellian and can be
integrated out. The inverse transform is given by

Z \/ZTF(” 8fm, F(vz):ﬁe*"? (10.71)

Because H.,(u) are orthogonal polynomials, viz.,
1
- /dvz Hp(uw)Hp (w)F(v:) = 2™m! 8y (10.72)

they have a Parseval theorem and so the contribution of the perturbed distribution function to
the free energy [see (4.18)] can be written as

/d3 TW' = Z|5fm . (10.73)

In a plasma where perturbations are constantly stirred up by a force, Landau damping must
be operating all the time, removing energy from ¢ to provide “dissipation” of the injected
power. The process of phase mixing that accompanies Landau damping must then lead to
a certain fluctuation level (|6f|?) in the Hermite moments of §f. Lower m’s correspond to
“fluid” quantities: density (m = 0), flow velocity (m = 1), temperature (m = 2). Higher m’s
correspond to finer structure in velocity space: indeed, for m > 1, the Hermite polynomials can
be approximated by trigonometric functions,

m/2
Hy(u) =~ V2 (27771) cos (\/Qmu - %) 6"2/2, (10.74)

and so the Hermite transform is somewhat analogous to a Fourier transform in velocity space
with “frequency” v/2m/vin.

(a) Show that in the kinetic Langevin problem described in Q7(c), the mean square
fluctuation level of the m-th Hermite moment of the perturbed distribution function is
given by

czm Q)|

e(—iw)

w

(10.75)

)

2D “+o0
([6fm (D)%) = m/ dw

- )
—o0 kv,

where Z(™)(() is the m-th derivative of the plasma dispersion function [note (3.89)].
(b**) Show that, assuming m > 1 and ¢ < v/2m,

2 m/2 ]
20 (¢) 0 V2m i+ (;”) eieVam=C2/2 (10.76)

and, therefore, that

const

Jm

([6fm ()]?) =~ (10.77)
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Thus, the Hermite spectrum of the free energy is shallow and, in particular, the total
free energy diverges—it has to be regularised by collisions. This is a manifestation of a
copious amount of fine-scale structure in velocity space (note also how this shows that
Landau-damped perturbations involve all Hermite moments, not just the “fluid” ones).

Deriving (10.76) is a (reasonably hard) mathematical exercise: it involves using (3.89) and (10.74)
and manipulating contours in the complex plane. This is a treat for those who like this sort of
thing. Getting to (10.77) will also require the use of Stirling’s formula.

The Hermite order at which the spectrum (10.77) must be cut off due to collisions can be quickly
deduced as follows. We saw in §4.5 that the typical velocity derivative of Jf can be estimated
according to (4.24) and the time it takes for this perturbation to be wiped out by collisions is
given by (4.29). But, in view of (10.74), the velocity gradients probed by the Hermite moment

m are of order v/2m /vsn. The collisional cut off me in Hermite space can then be estimated so:

9? kvin 2/3
Me ~ v?hw ~ (kvente)? ~ (7“> . (10.78)
Therefore, the total free energy stored in phase space diverges: using (10.73) and (10.77),
1 ! me -
E/dsvgf%=§;<|5fm|2>~/ dm C\O/I%Slt xv 500 as v — +0. (10.79)

In contrast, the total free-energy dissipation rate is finite, however small is the collision frequency:
estimating the right-hand side of (4.18), we get

df (09 e
%/d3vf—{: <a—1{>c ~ —l/;m<|6fm\2> x 1// dm v/m ~ kvgn. (10.80)

Thus, the kinetic system can collisionally produce entropy at a rate that is entirely independent
of the collision frequency.

If you find phase-space turbulence and generally life in Hermite space as fascinating as I
do, you can learn more from Kanekar et al. (2015) (on fluctuation-dissipation relations and
Hermite spectra) and from Schekochihin et al. (2016) and Adkins & Schekochihin (2018) (on
what happens when nonlinearity strikes).

Do one of Q9, Q10 or Q11.

9. Quasilinear theory of Landau damping. In §7, we discussed the QL theory of
an unstable system, in which, whatever the size of the initial electric perturbations, they
eventually grow large enough to affect the equilibrium distribution and modify it so
as to suppress further growth. In a stable equilibrium, any initial perturbations will be
Landau-damped, but, if they are sufficiently large to start with, they can also affect fy
quasilinearly in a way that will slow down this damping.

Consider, in 1D, an initial spectrum W (0, k) of plasma oscillations (waves) excited in
the wave-number range [ka, k1] = [wpe/V2, wpe /1] < ApL, with total electric energy £(0).
Modify the QL theory of §7 to show the following.

(a) A steady state can be achieved in which the distribution develops a plateau in
the velocity interval [v1,v9] (Fig. 32). Find FP2tat in terms of vy, vy and the initial
distribution F'(0,v). What is the energy of the waves in this steady state? What is the
lower bound on initial electric energy £(0) below which the perturbations would just
decay without forming a fully-fledged plateau?

(b) Derive the evolution equation for the thermal (nonresonant) bulk of the distribution
and show that it cools during the QL evolution, with the total thermal energy declining
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FIGURE 32. Initial stable equilibrium distribution and the final outcome of the QL evolution of
a system with Landau-damped electric perturbations.

by the same amount as the electric energy of the waves:
K (t) — K (0) = — [£(0) — E(2)] - (10.81)

Identify where all the energy lost by the thermal particles and the waves goes and thus
confirm that the total energy in the system is conserved. Why, physically, do thermal
particles lose energy?
(¢) Show that we must have
£(0 v
0) o v

nel, Wpe U

(10.82)

in order for the wave energy to change only by a small fraction before saturating and

£(0) ve (6v\? 1
— —_ 10.
nede > Wpe ( v > (kApe)? (10.83)

in order for the QL evolution to be faster than the damping. Here v = vo — v; and
UV~ V1 ~ V3.

This question requires some nuance in handling the calculation of the QL diffusion coefficient.
In §7.1, we used the expression (7.6) for df in which only the eigenmode-like part was retained,
while the phase-mixing terms were dropped on the grounds that we could always just wait
long enough for them to be eclipsed by the term containing an exponentially growing factor
e’'. When we are dealing with damped perturbations, there is no point in waiting because
the exponential term is getting smaller, while the phase-mixing terms do not decay (except by
collisions, see §84.3 and 4.5, but we are not prepared to wait for that).

Let us, therefore, bite the bullet and use the full expression (4.23) for the perturbed distribu-
tion function, where we single out the slowest-damped mode and assume that all others, if any,
will be damped fast enough never to produce significant QL effects:

1— efi(k-vfwk)tf'ykt . 8f0

q —ik-vt
of = — k- — 10.84
fe = ok P —— 90 € (gr+...), (10.84)

where “...” stand for any possible undamped, phase-mixing remnants of other modes. When

the solution (10.84) is substituted into (7.4), where it is multiplied by ¢}, and time averaged
[according to (2.7)], the second term vanishes because, for resonant particles (k- v ~ wg),
it contains no resonant denominators and so is smaller than the first term, whereas for the
nonresonant particles, it is removed by time averaging (check that this works at least for |ye|t < 1
and indeed beyond that). Keeping only the first term in the expression (10.84), substituting it
into (7.4) and going through a calculation analogous to that given in (7.8), we find that the
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diffusion matrix is (check this)

—i(kv—wg)t—7pt
> (10.85)

2
q kk 1—e
D(v) = ﬁzﬁ‘Ek'QIm< kv
k

which is a generalisation of the penultimate line of (7.8). For nonresonant particles, the phase-
mixing term is eliminated by time averaging and we end up with the old result: the last line
of (7.8). For resonant particles, assuming |vi| < |k v —wi| K wk ~ k- v and ||t < 1, we
may adopt the approximation (4.37), which we have previously used to analyse the structure
of Jf. This gives us

W — Yk

= m2 Z \Ek| 7o(k - v — wk), (10.86)

which is the same result as (7.16)—1ncludmg, importantly, the sign, which we would have
gotten wrong had we just mechanically applied Plemelj’s formula to (7.12) with v, < 0. This
is equivalent to saying that the k integral in (7.16) should be taken along the Landau contour,
rather than simply along the real line.

Note that the above construction was done assuming |y¢|t < 1, i.e., all the QL action has to
occur before the initial perturbations decay away (which is reasonable). Note also that there is
nothing above that would not apply to the case of unstable perturbations (v > 0) and so we
conclude that results of §7, derived formally for vt > 1, in fact also hold on shorter time scales
(vkt < 1, but, obviously, still wgt > 1).

10. Quasilinear theory of Weibel instability. (a) Starting from the Vlasov equa-
tions including magnetic perturbations, show that the slow evolution of the equilibrium
distribution function is described by the following diffusion equation:

dfo 0 dfo
—=—-D 10.
o ~ov P Gy (1087)
where the QL diffusion matrix is
2 *
q 1 . vXx By v X By
= ———k -~k 10.
D(v) mz;i(k~v—wk)+% (Ek+ . >(Ek+ . (10.88)

and wy, and 7 are the frequency and the growth rate, respectively, of the fastest-growing
mode.

(b) Consider the example of the low-frequency electron Weibel instability with wave
numbers k parallel to the anisotropy direction [see (10.45)]. Take k = k2 and By = Biy
and, denoting (2 = eBy/mc.c (the Larmor frequency associated with the perturbed
magnetic field), show that (10.87) becomes

ofy 0 dfo 9fo 9fo
% _ 9 (p,, 2 p, o), 9 p 9 10.89
ot~ oo, ( o0, 00, ) T 81}z v, (10.89)
where the coefficients of the QL diffusion tensor are
Vk 2 279,050, 2 VU2 2
Dmx = — |42 ) sz = - ———3 |2 ) zz .
R pe | g ErEEA Zk2v2+7 %

(10.90)

(c) Suppose the electron distribution function fy is initially the bi-Maxwellian (10.43)
with 0 < T /T — 1 < 1 (as should be the case for this instability to work). As QL
evolution starts, we may define the temperatures of the evolving distribution according to

TJ_:l/dS Mfm T = 1/d3vmv2fo (10.91)

n
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Show that initially, viz., before fp has time to change shape significantly so as no longer
to be representable as a bi-Maxwellian, the two temperatures will evolve approximately
(using vy, < kvgy,) according to

8TJ_ (r“)TH 271@“21@'2
= = _\T — L —9\T wh XNT,.,T)) = E —_— 10.92
ot 1 ot 1> ere ( ) H) k kQUtQhH ( )

Thus, QL evolution will lead, at least initially, to the reduction of the temperature
anisotropy, thus weaking the instability (these equations should not be used to trace
T /T) — 1 all the way to zero because there is no reason why the QL evolution should
preserve the bi-Maxwellian shape of fp).

Note that, even modulo the caveat about the bi-Maxwellian not being a long-term solution,
this does not give us a way to estimate (or even guess) what the saturated fluctuation level
will be. The standard Weibel lore is that saturation occurs when the approximations that were
used to derive the linear theory (Q3) break down, namely, when magnetic field becomes strong
enough to magnetise the plasma, rendering the Larmor scale pe = vine /2 associated with the
fluctuations small enough to be comparable to the latter’s wavelengths ~ k~1. Using the typical
values of k from (10.45), we can write this condition as follows

Vthe 1 _ B*/8x
2 ~ e ™~ Ae o
ke ~ VAT S B =TT

~ Al (10.93)

Thus, Weibel instability will produce fluctuations the ratio of whose magnetic-energy density
to the electron-thermal-energy density (customarily referred to as the inverse of “plasma beta,”
1/8.) is comparable to the electron pressure anisotropy A.. Because at that point the fluctu-
ations will be relaxing this pressure anisotropy at the same rate as they can grow in the first
place [in (10.92), A ~ ~;], the QL approach is not valid anymore.

These considerations are, however, usually assumed to be qualitatively sound and lead people
to believe that, even in collisionless plasmas, the anisotropy of the electron distribution must be
largely self-regulating, with unstable Weibel fluctuations engendered by the anisotropy quickly
acting to isotropise the plasma (or at least the electrons).

This is all currently very topical in the part of the plasma-astrophysics world preoccupied
with collisionless shocks, origin of the cosmic magnetism, hot weakly collisional environments
such as the intergalactic medium (in galaxy clusters) or accretion flows around black holes and
many other interesting subjects.

(d) Equations (10.92) say that the total mean kinetic energy,

2 T
/d% % fo=n (TL + 2') : (10.94)

does not change. But fluctuations are generated and grow at the rate 7! Without much
further algebra, can you tell whether you should therefore doubt the result (10.92)7

11. Quasilinear theory of stochastic acceleration.’® Consider a population of
particles of charge ¢ and mass m. Assume that collisions are entirely negligible. Assume
further that an electrostatic fluctuation field E = —V (with zero spatial mean) is
present and that this field is given and externally determined, i.e., it is unaffected by
the particles that are under consideration. This might happen physically if, for example,
the particles are a low-density admixture in a plasma consisting of some more numerous
species of ions and electrons, which dominate the plasma’s dielectric response.

As usual, we assume that the distribution function can be represented as f = fo(t,v)+
of (t,r,v), where fy is spatially homogeneous and changes slowly in time compared to the

55Except for part (d), this is based on the 2018 exam question.
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perturbed distribution df < fo. Its evolution is described by (2.11), where angle brackets
again denote the time average over the fast variation of the fluctuation field.

(a) Assume that ¢ is sufficiently small for it to be possible to determine Jf from the
linearised kinetic equation. Let Jf = 0 at ¢ = 0. Show that fy satisfies a QL diffusion
equation with the diffusion matrix

2 t
q 1 1 o
[ 10.
v) " Ek kk = /dp b rikw /_ d7 " Cy (1), (10.95)

where the p integration is along a contour appropriate for an inverse Laplace transform
and Cr(t —t') = (¢}, (t)¢r(t’)) is the correlation function of the fluctuation field (which
is taken to be statistically stationary, so C depends only on the time difference ¢t — ¢').

(b) Let the correlation function have the form
Cr(7) = Age =71 (10.96)

ie., v 1 is the correlation time of the fluctuation field and A its spectrum; assume
Y_k = Yk- Do the integrals in (10‘95) and show that, at ¢ > ’y,zl,

Ve Ak
- m2 zk: o) (10.97)

(c) Restrict consideration to 1D in space and to the limit in which -y, > kv for typical
wave numbers of the fluctuations and typical particle velocities (i.e., the fluctuation field
is short-time correlated). Assuming that fy at ¢ = 0 is a Maxwellian with temperature
Ty, predict the evolution of fy with time. Discuss what physically is happening to the
particles. Discuss the validity of the short-correlation-time approximation and of the
assumption of slow evolution of fy. What is, roughly, the condition on the amplitude and
the correlation time of the fluctuation field that makes these assumptions compatible?

(d) When the distribution “heats up” sufficiently, the short-correlation-time approxi-
mation will be broken. Staying in 1D, consider the opposite limit, vy, < kv. Show that
the resulting QL equation admits a subdiffusive solution, with

ef'u4/at

fo(t,v) o —7—, 16— Z Vi Ag. (10.98)

In view of this result and of (¢), discuss qualitatively how an initially “cold” particle
distribution would evolve with time.

The original, classic paper on stochastic acceleration is Sturrock (1966). Note that the velocity
dependence of the diffusion matrix (10.97) is determined by the functional form of Ck(7), so
interesting 7 dependences of the latter can lead to all kinds of interesting distributions fo of the
accelerated particles.

IUCUNDI ACTI LABORES.
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PART 11

Magnetohydrodynamics

11. MHD Equations

Like hydrodynamics from gas kinetics, MHD can be derived systematically from the
Vlasov—Maxwell-Landau equations for a plasma in the limit of large collisionality + a
number of additional assumptions (see, e.g., Goedbloed & Poedts 2004; Parra 2018a).
Here 1 will adopt a purely fluid approach—partly to make these lectures self-consistent
and partly because there is a certain beauty in it: we need to know relatively little about
the properties of the constituent substance in order to spin out a very sophisticated and
complete theory about the way in which it flows. This approach is also more generally
applicable because the substance that we will be dealing with need not be gaseous, like
plasma—you may also think of liquid metals, various conducting solutions, etc.

So, let us declare an interest in the flow of a conducting fluid and attempt to be guided
in our description of it by the very basic things: conservation laws of mass, momentum
and energy plus Maxwell’s equations for the electric and magnetic fields. This will prove
sufficient for most of our purposes. So we consider a fluid characterised by the following
quantities:

p—mass density,
u—flow velocity,
p—pressure,
o—charge density,
j—current density,
E—-eclectric field,
B—magnetic field.

Our immediate objective is to find a set of closed equations that would allow us to
determine all of these quantities as functions of time and space within the fluid.

11.1. Conservation of Mass

This is the most standard of all arguments in fluid dynamics (Fig. 33):

4 /d3rp = —/ (pu) -dS = —/d3rV - (pu). (11.1)
dt \%d ov 174
—— ——
mass inside a mass flux
volume of in/out
fluid

As this equation holds for any V', however small, it can be converted into a differential
relation

dp B
5 TV (u)=0]. (11.2)

This is the continuity equation.



96 A. A. Schekochihin

—
w

3V

Ficure 33. Stuff flowing in and out of a volume V enclosed by surface 0V

11.2. Conservation of Momentum

A similar approach:

d
—/d?’rpu :—/ (puu) - dS - / pdS - IT-dS + /d3rF
dt Jy oV ~—~— ov ov v
— Reynolds H/—/ — ——
momentum stress pressure on viscous stress all other
inside a boundary forces (E&M
volume of momentum flux (momentum will come in
fluid through boundary ﬁ‘_lx due to here)
(fluid flow carrying mtel‘rnal
its own momentum) motion)
:/dg'r -V (puu) —Vp—-V . -II + F]. (11.3)
\4
In differential form, this becomes
0
P = —-V.(puu) -Vp—-V -II+F, (11.4)
S~ ——
ou dp —pu - Vu

=P T %o —uV Apa)

ou
= pg; — u—Apu)

and so, finally,

0
p(a';‘+u-Vu>vpV.ﬂ+F . (11.5)
—_——
= diu
T de,
convective
derivative

This is the momentum equation.

One part of this equation does have to be calculated from some knowledge of the microscopic
properties of the constituent fluid or gas—the viscous stress. For a gas, it is done in kinetic
theory (e.g., Lifshitz & Pitaevskii 1981; Dellar 2015; Schekochihin 2018):

II=—pv|Vu+ (Vu)" - %V ~ul|, (11.6)

where v is the kinematic (Newtonian) viscosity. In what follows, we will never require the explicit
form of IT (except perhaps in §11.10).

In a magnetised plasma (i.e., such that its collision frequency < Larmor frequency of the
gyrating charges), the viscous stress is much more complicated and anisotropic with respect to
the direction of the magnetic field: because of their Larmor motion, charged particles diffuse
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differently across and along the field. This gives rise to the so-called Braginskii (1965) stress
(see, e.g., Helander & Sigmar 2005; Parra 2018a).

11.3. Electromagnetic Fields and Forces

The fact that the fluid is conducting means that it can have distributed charges (o)
and currents () and so the electric (E) and magnetic (B) fields will exert body forces
on the fluid. Indeed, for one particle of charge ¢, the Lorentz force is

fL—q(E+”XCB), (11.7)

and if we sum this over all particles (or, to be precise, average over their distribution and
sum over species), we will get

i % B
F=0E+222. (11.8)
C

This body force (force density) goes into (11.5) and so we must know E, B, ¢ and j in
order to compute the fluid flow u.
Clearly it is a good idea to bring in Maxwell’s equations:

V -E =4no (Gauss), (11.9)

V.B=0, (11.10)

aa—? = —cV x E (Faraday), (11.11)

V xB= 41_7' + 1% (Ampere-Maxwell). (11.12)
c c

To these, we must append Ohm’s law in its simplest form: The electric field in the frame
of a fluid element moving with velocity w is

E,:E+uxB

— nj, (11.13)

where FE is the electric field in the laboratory frame and 7 is the Ohmic resistivity.

Normally, the resistivity, like viscosity, has to be computed from kinetic theory (see, e.g.,
Helander & Sigmar 2005; Parra 2018a) or tabulated by assidiuous experimentalists. In a
magnetised plasma, the simple form (11.13) of Ohm’s law is only valid at spatial scales longer
than the Larmor radii and time scales longer than the Larmor periods of the particles (see, e.g.,
Goedbloed & Poedts 2004; Parra 2018b).

Equations (11.9-11.13) can be reduced somewhat if we assume (quite reasonably for
most applications) that our fluid flow is non-relativistic. Let us stipulate that all fields
evolve on time scales ~ 7, have spatial scales ~ £ and that the flow velocity is

1
u~— < ec. (11.14)
T

Then, from Ohm’s law (11.13),
E~YB<«B, (11.15)
c

so electric fields are small compared to magnetic fields.
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In Ampeére-Maxwell’s law (11.12),

10E| 114

c ot P u?

|V < B| ~ EB ~ 672 < 1, (11.16)
4

so the displacement current is negligible (note that at this point we have ordered out
light waves; see Q2 in Kinetic Theory). This allows us to revert to the pre-Maxwell form
of Ampere’s law:

j= 4iv x B]|. (11.17)
I8

Thus, the current is no longer an independent field, there is a one-to-one correspondence
j < B.

Finally, comparing the electric and magnetic parts of the Lorentz force (11.8), and
using Gauss’s law (11.9) to estimate o ~ E/{, we get

1
—E? 2 2
E E
|G ‘ ¢ ~ ﬁ ~ % < 1. (11.18)
2

1 “T¢
1 ZZRB
CJXB‘ o7

Thus, the MHD body force is

_jxB (VxB)xB
¢ 4

F

(11.19)

This goes into (11.5) and we note with relief that o, j and E have all fallen out of the
momentum equation—we only need to know B.

11.4. Mazwell Stress and Magnetic Forces

Let us take a break from formal derivations to consider what (11.19) teaches us about
the sort of new dynamics that our fluid will experience as a result of being conducting.
To see this, it is useful to play with the expression (11.19) in a few different ways.

By simple vector algebra,

B-VB B? B? BB
47 8w 8w 4

N—— SN~

“magnetic “magnetic “Maxwell

tension” pressure” stress”

where the last expression was obtained with the aid of V - B = 0. Thus, the action of
the Lorentz force in a conducting fluid amounts to a new form of stress. Mathematically,
this “Mazwell stress” is somewhat similar to the kind of stress that would arise from a
suspension in the fluid of elongated molecules—e.g., polymer chains, or other kinds of
“balls on springs” (see, e.g., Dellar 2017; the analogy can be made rigorous: see Ogilvie
& Proctor 2003). Thus, we expect that the magnetic field threading the fluid will impart
to it a degree of “elasticity.”

Exactly what this means dynamically becomes obvious if we rewrite the magnetic
tension and pressure forces in (11.20) in the following way. Let b = B/B be the unit
vector in the direction of B (the unit tangent to the field line). Then

2
B.-VB = Bb-V(Bb) :B2b-Vb+bb-VB7 (11.21)
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(a) Curvature force (b) Magnetic pressure

FIGURE 34. Magnetic forces.

and, putting this back into (11.20), we get

B? B?
F= —-b:Vb —(1-bb) V. (11.22)
/i T Y5
« = €L
curvature
force” magnetic

pressure force
Thus, we learn that the Lorentz force consists of two distinct parts (Fig. 34):

e curvature force, so called because b- Vb is the vector curvature of the magnetic field
line—the implication being that field lines, if bent, will want to straighten up;

e magnetic pressure, whose presence implies that field lines will resist compression or
rarefication (the field wants to be uniform in strength).

Note that both forces act perpendicularly to B, as they must, since magnetic field never
exerts a force along itself on a charged particle [see (11.7)].
So this is the effect of the field on the fluid. What is the effect of the fluid on the field?

11.5. Ewolution of Magnetic Field
Returning to deriving MHD equations, we use Ohm’s law (11.13) to express E in terms

of u, B and j in the right-hand side of Faraday’s law (11.11). We then use Ampere’s law
(11.17) to express j in terms of B. The result is

0B cn

— =V B-—VxB]. 11.23

T X (u X VX ) ( )
After using also V- B = 0 to get V x (V x B) = —V2B and renaming c?n/4m — 7, the
magnetic diffusivity, we arrive at the magnetic induction equation (due to Hertz):

0B
— =Vx(uxB) + nV’B |. (11.24)
ot —_—— ——

advection diffusion

Note that if V- B = 0 is satisfied initially, any solution of (11.24) will remain divergence-
free at all times.

11.6. Magnetic Reynolds Number

The relative importance of the diffusion term (it is obvious what this does) and the
advection term (to be discussed in the next few sections) in (11.24) is measured by a
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dimensionless number:

-B
|V x (u x B)] 7 ul
WeB| " g o (11:29)

called the magnetic Reynolds number. In nature, it can take a very broad range of values:

liquid metals in idustrial contexts (metallurgy): Rm ~ 1073 ...1071,
planet interiors: Rm ~ 100... 300,
solar convective zone: Rm ~ 10%...109,
interstellar medium (“warm” phase): Rm ~ 108
intergalactic medium (cores of galaxy clusters): Rm ~ 1029,
laboratory “dynamo” (§11.10) experiments: Rm ~ 1...10? (and growing).

Generally speaking, when flow velocities are large/distances are large/resistivities are
low, Rm > 1 and it makes sense to consider “ideal MHD,” i.e., the limit n — 0. In fact,
1 often needs to be brought back in to deal with instances of large VB, which arise
naturally from solutions of ideal MHD equations (see §11.10, §15.2 and Parra 2018a),
but let us consider the ideal case for now to understand what the advective part of the
induction equation does to B.

11.7. Lundquist Theorem
The ideal (n = 0) version of the induction equation (11.24),

aa—f =V x (u x B), (11.26)

implies that fluid elements that lie on a field line initially will remain on this field line,
i.e., “the magnetic field moves with the flow.”

Proof. Unpacking the double vector product in (11.26),

0B
Ez—thB—&-B-Vu—BV-u—Fuy/B, (11.27)
or, using the notation for the “convective derivative” [see (11.5)],
dB 0
— = = . B=B- — BV -u. 11.28
T (815 +u V) Vu V-u ( )
The continuity equation (11.2) can be rewritten in a somewhat similar-looking form
dp 0 1dp
dp_ (9 ... — V. T 11.29
a (8t+u V)p pV-u = V.u St ( )
The last expression is now used for V - w in (11.28):
dB B dp
—=B-V —_—— 11.30
dt RREPT (11.30)

Multiplying this equation by 1/p and noting that

LB By 4B e
pdt p2dt dtp
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GRS

FIGURE 35. Pressure-balanced perturbations.

we arrive at

dB_B

— = . 11.32
T 5 Vu (11.32)

Let us compare the evolution of the vector B/p with the evolution of an infinitesimal La-
grangian separation vector in a moving fluid: the convective derivative is the Lagrangian
time derivative, so

d
&57'@) =u(r +r) —u(r) = ir - Vu. (11.33)

Thus, 6r and B/p satisfy the same equation. This means that if two fluid elements are
initially on the same field line,

B
or = const —, (11.34)
p

then they will stay on the same field line, g.e.d.

This means that in MHD, the fluid flow will be entraining the magnetic-field lines with
it—and, as we saw in §11.4, the field lines will react back on the fluid:
—when the fluid tries to bend the field, the field will want to spring back,
—when the fluid tries to compress or rarefy the field, the field will resist as if it possessed
(perpendicular) pressure.

This is the sense in which MHD fluid is “elastic”: it is threaded by magnetic-field lines,
which move with it and act as elastic bands.

11.8. Flux Freezing

There is an essentially equivalent formulation of the result of §11.7 that highlights
the fact that the ideal induction equation (11.26) is a conservation law—conservation of
magnetic fluz.

The magnetic flux through a surface S (Fig. 36a) is, by definition,

@:/B-ds (11.35)
s
(dS = ndS, where n is a unit normal pointing out of the surface). The flux & depends on

the loop 0S, but not on the choice of the surface spanning it. Indeed, if we consider two
surfaces, Sy and S, spanning the same loop 05 (Fig. 36b) and define @, o = fsl , B-dSs,
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FIGURE 36. Magnetic flux through a loop 95 (a) is independent of the surface spanning the
loop (b).

/TR
Loop k-
lﬂ’:ﬁ fing £

F1GURE 37. A loop moving with the fluid.

then the flux out of the volume V enclosed by S; U Sy = 9V is

Dy — Py = B-dS:/ d3rv-B=0, qed (11.36)
ov 14

Alfvén’s Theorem. Flux through any loop moving with the fluid is conserved.

Proof. Let S(t) be a surface spanning the loop at time ¢. If the loop moves with the
fluid (Fig. 37), at the slightly later time ¢ + d¢ it is spanned (for example) by the surface

S(t+dt) = S(t) U ribbon traced by jche loop (11.37)
as it moves over time dt.

Then the flux at time ¢ is

B(t) = B(t)-dS (11.38)



Ozford MMathPhys Lectures: Plasma Kinetics and MHD 103

FIGURE 38. Flux tube.

and at the later time,

O(t +dt) :/ B(t+dt)-dS
S(t-+dt)
= B(t +dt)-dS + / B(t +dt) - dS
S(t) ribbon _ u\d?;dl
0B
= B(t)-dS +dt —-dS
/S(t) ® s Ot =dt osto B(t) - (uxdl)
=) = —dt (ux B)-dl
aS(t)
= —dt [V x (ux B)]-dS.
S(t)
(11.39)
Therefore,
Ad  B(t+dt) — (1) / OB
— = 7 Y —_— — B)|-dS=0 .e.d. 11.40
dt at s Lot V x (ux B) ., qe (11.40)

ideal induction
equation (11.26)

This result means that field lines are frozen into the flow. Indeed, consider a flux tube
enclosing a field line (Fig. 38). As the tube deforms, the field line stays inside it because
fluxes through the ends and sides of the tube cannot change.

Note that Ohmic diffusion breaks flux freezing, as is obvious from (11.40) if in the
integrand one uses the induction equation (11.24) keeping the resistive term.

11.9. Amplification of Magnetic Field by Fluid Flow

An interesting physical consequence of these results is that flows of conducting fluid can
amplify magnetic fields. For example, consider a flow that stretches an initial cylindrical
tube of length [; and cross section S into a long thin spaghetto of length /5 and cross
section Ss (Fig. 39). By conservation of flux,

B1S), = ByS,. (11.41)

By conservation of mass,

plllSl = pglgSg. (1142)
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FicURE 39. Amplification of magnetic field by stretching.

Therefore,
B B B l
L2 _ 5 D2 ;e (11.43)
p2la pily By pihh
In an incompressible fluid, po = p;, and the field is amplified by a factor I3/l;. In a
compressible fluid, the field can also be amplified by compression.
Going back to the induction equation in the form (11.27),
0B
—+4+ u-VB = B-Vu — BV .u, (11.44)
ot ———— —— ——

advection stretching compression

the three terms in it are responsible for, in order, advection of the field by the flow (i.e.,
the flow carrying the field around with it), “stretching” (amplification) of the field by
velocity gradients that make fluid elements longer and, finally, compression or rarefication
of the field by convergent or divergent flows (unless V-u = 0, as it is in an incompressible
fluid).

Hence arises the famous problem of MHD dynamo: are there fluid flows that lead to
sustained amplification of the magnetic fields? The answer is yes—but the flow must be
3D (the absence of dynamo action in 2D is a theorem, the simplest version of which is due
to Zeldovich 1956; see Q4). Magnetic fields of planets, stars, galaxies, etc. are all believed
to owe their origin and persistence to this effect. This topic requires (and merits) a more
detailed treatment (§11.10), but for now let us flag two important aspects:

e resistivity, however small, turns out to be impossible to neglect because large
gradients of B appear as the field is advected by the flow;

e the amplification of the field is checked by the Lorentz force once the field is strong
enough that it can act back on the flow, viz., when their energy densities become
comparable:

=~ (11.45)

11.10. MHD Dynamo

I will fill this in at some point. You will find a (somewhat outdated) preview in my
handwritten lecture notes available here: http://www-thphys.physics.ox.ac.uk/people/
AlexanderSchekochihin/notes/leshouches07.pdf.

A very short printed review is Schekochihin & Cowley (2007, §3). Another decent one is Tobias
et al. (2012). A classic (and mostly timeless) text on the mean-field dynamo theory (amplification
of large-scale magnetic fields by small-scale turbulence) is Moffatt (1978).



http://www-thphys.physics.ox.ac.uk/people/AlexanderSchekochihin/notes/leshouches07.pdf
http://www-thphys.physics.ox.ac.uk/people/AlexanderSchekochihin/notes/leshouches07.pdf
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11.11. Conservation of Energy

Let us summarise the equations that we have derived so far, namely (11.2), (11.5) and
(11.24), expressing conservation of

0
mass a—/t) + V. (pu) =0, (11.46)
B)x B
momentum p a—u+u-vu = —Vp—V~H+M
ot 4
B2 BB
=-V.||lp+—)1-——+1II|, (11.47)
8T 4

total stress

and flux aa—f =V x (ux B)+nV*B. (11.48)

To complete the system, we need an equation for p, which has to come from the one
conservation law that we have not yet utilised: conservation of energy.

The total energy density is

2 2
U E B
2 v—1 s 8T
~— R . ~—
kinetic internal electric magnetic

where the electric energy can (and, for consistency with §11.3, must) be neglected because
E?/B?% ~ u?/c? < 1. We follow the same logic as we did in §§11.1 and 11.2:

d u?
4 /d3r5 = —/ (p+p>u~d5/ (p! + IT) - ) - AS
¢t Jv v\ 2 -1 ov
———
energy inside fluid flow carrying its work done on boundary
a volume of kinetic and internal energy by pressure and viscous
fluid through boundary stress
c
- / q-dSs —/ — (Ex B)-dS. (11.50)
oV ov 4
heat flux Poynting flux

Like the viscous stress IT, the heat flux ¢ must be calculated kinetically (in a plasma) or
tabulated (in an arbitrary complicated substance). In a gas, ¢ = —kVT, but it is more
complicated in a magnetised plasma (see, e.g., Braginskii 1965; Helander & Sigmar 2005;
Parra 2018a).

Note that the magnetic energy and the work done by the Lorentz force are not included

in the first two terms on the right-hand side of (11.50) because all of that must already
be correctly acounted for by the Poynting flux. Indeed, since cE = —u x B+ nV x B
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[this is (11.13), with 1 renamed as in (11.24)], we have

c B? B2 BB
S (ExB)- — 2 . Z 22wl
/6\/47T( x B)-dS /3‘/87ru dS+/aV[<87r 4ﬂ>u} ds

magnetic energy work done by Maxwell stress
flow
V x B)x B
+ / 7]% -dS . (11.51)
F)% 47

resistive slippage accounting
for field not being precisely
frozen into flow

After application of Gauss’s theorem and shrinking of the volume V to infinitesimality,
we get the differential form of (11.50):

0 ( pu? P B? pu? ¥
(s £ 4= - v. | - IT-
at( > 1 % g WLt
Bl - BB V x B) x B
LBA=BB  NXBIXB) g5
47 47

It remains to separate the evolution equation for p by using the fact that we know the
equations for p, u and B and so can deduce the rates of change of the kinetic and
magnetic energies.

11.11.1. Kinetic Energy
Using (11.46) and (11.47),

9 pu?  u?op n Ju
- = u - —
ot 2 2ot o
u? u? B? BB
=-——V. —pu-V——u-sV- — |l —— 41T
g Vo) —pu- Vo —u { |:<p+8ﬂ') T ]}
pu? B? BB
=-V- u + pu + W + IF-u
T
2 BB
+ pV-u + —l——1):Vu + II:Vu. (11.53)
8T 4
N—— ——
compressional energy exchange viscous
work with magnetic field dissipation

The flux terms (energy flows and work by stresses on boundaries) that have been crossed
out cancel with corresponding terms in (11.52) once (11.53) is subtracted from it.
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11.11.2. Magnetic Energy
Using the induction equation (11.48),

0 B? B
e =i [~u-VB+B:-Vu— BV -u+nV>B]
B? (VxB @ B? BB |V x BJ?
=-V. - |—l-—]:Vu — n——— .
L%_‘_ il 4 ] (87r 4 ) v K 4
energy exchange Ohmic
with velocity field dissipation
(11.54)

Again, the crossed out flux terms will cancel with corresponding terms in (11.52). The
metamorphosis of the resistive term into a flux term and an Ohmic dissipation term is a
piece of vector algebra best checked by expanding the divergence of the flux term. Finally,
the u-to-B energy exchange term (penultimate on the right-hand side) corresponds
precisely to the B-to-u exchange term in (11.53) and cancels with it if we add (11.53)
and (11.54).

11.11.3. Thermal Energy

Subtracting (11.53) and (11.54) from (11.52), consummating the promised cancella-
tions, and mopping up the remaining V - (pu) and pV - u terms, we end up with the
desired evolution equation for the thermal (internal) energy:

d p v |V x BJ?
T V.q 'y—lpv u —II:Vu + 17 . . (11.55)
——— ——
advection of heat flux compressional viscous Ohmic
internal heating heating heating
energy

A further rearrangement and the use of the continuity equation (11.46) to express V-u =
—dInp/dt turn (11.55) into

d —1
1np=7(—v-q—H:Vu+n

11.56
a T (11.56)

47

|V x B|2>

This form of the thermal-energy equation has very clear physical content: the left-hand
side represents advection of the entropy of the MHD fluid by the flow—each fluid element
behaves adiabatically, except for the sundry non-adiabatic effects on the right-hand side.
The latter are the heat flux in/out of the fluid element and the dissipative (viscous
and resistive) heating, leading to entropy production. Note that the form of the viscous
stress IT ensures that the viscous heating is always positive [see, e.g., (11.6)]. In these
Lectures, we will, for the most part, focus on ideal MHD and so use the adiabatic version
of (11.56), with the right-hand side set to zero.
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Let us reiterate the equations of ideal MHD, now complete:

% + V- (pu) =0, (11.57)
ou B (VxB)x B
0 (815 +u- Vu) =-Vp+ y , (11.58)
0B
0 P
(at+u'v> 5 =0 (11.60)

In what follows, we shall study various solutions and symptotic regimes of these rather
nice equations.

11.12. Virial Theorem

Are there self-confined states? Coming soon. ..

11.13. Lagrangian MHD

There is a mathematically attractive Lagrangian formulation of MHD, on which there is an
excellent classic paper by Newcomb (1962). Read it while this section remains unwritten.

This formalism, besides shedding some conceptual light, turns out to give us some useful
analytical tools, e.g., for the treatment of explosive MHD instabilities (Pfirsch & Sudan 1993;
Cowley & Artun 1997).

12. MHD in a Straight Magnetic Field

Equations (11.57-11.60) have a very simple static, uniform equilibrium solution:
po = const, pg = const, wg=0, Bg= Byz = const. (12.1)

We will turn to more nontrivial equilibria in due course, but first we shall study this one
carefully—because it is very generic in the sense that many other, more complicated,
equilibria locally look just like this.

12.1. MHD Wawves

If you have an equilibrium solution of any set of equations, your first reflex ought to
be to perturb it and see what happens: the system might support waves, instabilities,
possibly interesting nonlinear behaviour of small perturbations (e.g., §§7-10).

So we now seek solutions to the MHD equations (11.57-11.60) in the form

o€
ot’

where we have introduced the fluid displacement field £€.56 To start with, we consider all

p=po+dp, p=po+dp, u= B = Byz + B, (12.2)

®Thinking in terms of displacements makes sense in MHD but not so much in (homogeneous)
hydrodynamics because in the latter case, just displacing a fluid element produces no back
reaction, whereas in MHD, because magnetic fields are frozen into the fluid and are elastic,
displacing fluid elements causes magnetic restoring forces to switch on. In other words, an
(ideal) MHD fluid “remembers” the state from which it has been displaced, whereas neutral
(Newtonian) fluids only “know” about velocities at which they flow.
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(a) Perpendicular perturbations, (b) Parallel perturbations,
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FI1GURE 40. Magnetic perturbations.

perturbations to be infinitesimal and so linearise the MHD equations (11.57-11.60) as
follows.

0 B dp 1913
((%+u.v>p_—pv u = ot =—poV ot
dp
= |—=-V-£|, (12.3)
Po
0 P dop gip
(3t+u V)/ﬂ_o Gt Otpo
- |2 vl (12.4)
Po
0 B JéB o€ o€
(eru-V)BB Vu-BV-u = T 7B0V|‘at 2ByV 5t
oB . .
= E=V||£—ZV'€=V||£L—ZVL~€L
0B | 0B
= Biozv\lﬁL ) ?OZ—VL'€¢ ;

(12.5)

where || and L denote projections onto the direction (z) of By and onto the plane (z,y)
perpendicular to it, respectively. Equations (12.5) tell us that parallel displacements
produce no perturbation of the magnetic field—obviously not, because the magnetic
field is carried with the fluid flow and nothing will happen if you displace a straight
uniform field parallel to itself.
The physics of magnetic-field perturbations becomes clearer if we observe that
0B §(Bb) 0B

- = =6b+ 2 —. 12.
Be Be ) +zBO (12.6)

The perturbed field-direction vector db must be perpendicular to 2 (otherwise the field
direction is unperturbed; formally this is shown by perturbing the equation b® = 1).
Therefore, the perpendicular and parallel perturbations of the magnetic field are the
perturbations of its direction and strength, respectively (Fig. 40):

0B 8By B

P g, T (127)
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FIGURE 41. Coordinate system for the treatment of MHD waves.

Finally, linearising (11.58) gives us

ou B? B-VB
— -V = -V -V— — . (128
p ( ot T u> b 8w * 4 (12:8)
—— —— ——
8¢ = —Vip B2 _ 6B B2 . 6B
=P = VYV -& =T VE, =4V (‘”’*ZBT))
from (12.4)
B OB
_E( Vifo+v"§b>
B3 5
. (ViVL-& +VE)),

from (12.7) and (12.5)

Assembling all this, we get

82
an =ZVV £+ (VLVL-& +ViE))

(12.9)

where two special velocities have emerged:

[YPo By
Cs =] —, vA= , 12.10
Po VAT po ( )

the sound speed and the Alfvén speed, respectively. The former is familiar from fluid
dynamics, while the latter is another speed, arising in MHD, at which perturbations can
travel. We shall see momentarily how this happens.

Let us seek wave-like solutions of (12.9), & o« exp(—iwt+1ik-r). For such perturbations,

W = cZkk-E+vX (kikl & +Kf€,). (12.11)

Without loss of generality, let k = (k1,0, k) (i.e., by definition, z is the direction of k_ ;
see Fig. 41). Then (12.11) becomes

Wiy = ko (kL& + ky€)) + vik3Es, (12.12)
W&y = vAk(Ey, (12.13)
Wy = Gk (kLé + k&) (12.14)
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FIGURE 42. Hannes Olof Goésta Alfvén (1908-1995), Swedish electrical engineer and plasma
physicist. He was the father of MHD, distrusted religion, computers and Big Bang theory, and
got a Nobel Prize “for fundamental work and discoveries in magnetohydrodynamics with fruitful
applications in different parts of plasma physics” (1970). In this picture, he is receiving it from
King Gustaf VI Adolf of Sweden.

FIGURE 43. Alfvén waves.

The perturbations of the rest of the fields are

4 . ,

s §

P_ 2 (12.16)

Po Po
&z

Sb=iky&, =ik [ & |, (12.17)
0

B _ ke (12.18)

By
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FIGURE 44. Friedricks diagram: radius w/k, angle cos§ = k /k.

12.1.1. Alfvén Waves

We start by spotting, instantly, that (12.13) decouples from the rest of the system.
Therefore, £ = (0,&,,0) is an eigenvector, with two associated eigenvalues

w = ik)”’UA , (12.19)

representing Alfvén waves propagating parallel and antiparallel to By. An Alfvénic
perturbation is (Fig. 43a)

E=¢69, =0, sp=0, B=0, 6b=ikt,D, (12.20)

i.e., it is incompressible and only involves magnetic field lines behaving as elastic strings,
springing back against perturbing motions, due to the restoring curvature force. Note
that these waves can have k) # 0 even though their dispersion relation (12.19) does not
depend on k; (Fig. 43b).

12.1.2. Magnetosonic Waves
Equations (12.12) and (12.14) form a closed 2D system:

212 o2 k? Ckiky 1
wz(fz>_<csi_ ART R )<r> 12.21
&) cZhykL cikj £ ( )

The resulting dispersion relation is

w = k(e + v} )w? + i kk] = 0. (12.22)
This has four solutions:
2*11432 2 2 2 2\2 2,,2 20 297kﬁ
Wi =g cs +vx £4/(c2 +v3)? —4c2v; cos , cosTl =15 (12.23)
The two “+” solutions are the “fast magnetosonic waves” and the two “—” ones are the

“slow magnetosonic waves”.

Since both sound and Alfvén speeds are involved, it is obvious that the key parameter
demarcating different physical regimes will be their ratio, or, conventionally, the ratio of
the thermal to magnetic energies in the MHD medium, known as the plasma beta:

Po 2 c2

— = -2, 12.24
2 BE /8t i ( )
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FIGURE 45. Sound waves.

The magnetosonic waves can be conveniently summarised by the so-called Friedricks
diagram, a graph of (12.23) in polar coordinates where the radius is the phase speed w/k
and the angle is 6, the direction of propagation with respect to By (Fig. 44).

Clearly, magnetosonic waves contain perturbations of both the magnetic field and of
the “hydrodynamic” quantities p, p, u, but working them all out for the case of general
oblique propagation (6 ~ 1) is a bit messy. The physics of what is going on is best
understood via a few particular cases.

12.1.3. Parallel Propagation

Consider (6 =0). Then (£,0,0) and (0,0,¢)) are eigenvectors of the matrix
in (12.21) and the two corresponding waves are

e another Alfvén wave, this time with perturbation in the x direction (which, however,
is not physically different from the y direction when k; = 0):

W€y = kﬁvifx = |w=xkjva |, (12.25)

£=&x, p=0, op=0, B=0, 0b=ik,x (12.26)
(at high S, this is the slow wave, at low 3, this is the fast wave);

e the parallel-propagating sound wave (Fig. 45a):

G = kg = |w=tke|, (12.27)

£=¢z, ?Z—ikﬂq, przvéﬁ, B=0, =0 (12.28)
0 0

Po

(at high 3, this is the fast wave, at low (3, this is the slow wave); the magnetic field does
not participate here at all.

12.1.4. Perpendicular Propagation
Now consider | ki = 0| (6 = 90°). Then (&;,0,0) is again an eigenvector of the matrix

in (12.21).°7 The resulting fast magnetosonic wave is again a sound wave, but because
it is perpendicular-propagating, both thermal and magnetic pressures get involved, the
perturbations are compressions/rarefactions in both the fluid and the field, and the speed

57 As is (0, 0,&), but with w = 0; we will deal with this mode in §12.3.4.
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at which they travel is a combination of the sound and Alfvén speeds (with the latter
now representing the magnetic pressure response):

Wi =K (2R = |w=tki/2+0d ], (12.29)
1o 1) 1o 6B

t=ci, L=_ikie, P-y® T _ ke sb=0. (12.30)
Po Do po Bo

Note that the thermal and magnetic compressions are in phase and there is no bending
of the magnetic field (Fig. 45b).

12.1.5. Anisotropic Perturbations: ky < k1

Taking k| = 0 in §12.1.4 was perhaps a little radical as we lost all waves apart from
the fast one. As we are about to see, a lot of babies were thrown out with this particular
bathwater.

So let us consider MHD waves in the limit . This turns out to be an extremely

relevant regime, because, in a strong magnetic field, realistically excitable perturbations,
both linear and nonlinear, tend to be highly elongated in the direction of the field. Going
back to (12.23) and enforcing this limit, we get

1 4c2v2 kT
2 _ 2/ 2 2 s VA ll
w —ik(CS‘F’UA) 1i\/1(cz—i-vi>2k’2

2051)12_\ /iﬁ
(Z+ 02 k2|

Q

1
3 B2 +v3) [1+1F (12.31)

The upper sign gives the familiar fast wave

w=tky/c2+v3|. (12.32)

This is just the magnetically enhanced sound wave that was considered in §12.1.4. The
small corrections to it due to k|/k are not particularly interesting.
The lower sign in (12.31) gives the slow wave

CsUA
2 2 |’
VA O

which is more interesting. Let us find the corresponding eigenvector: from (12.14),

w = :tkH (1233)

(W? = kfed) & = kykLc2Es. (12.34)
2 Cg
from (12.33)

Therefore, the displacements are mostly parallel:

L_ ki d
fH_ kJ_C?ﬁ"U%

<1]. (12.35)

Using this equation together with (12.15-12.18), we find that the perturbations in the
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FIGURE 46. Slow wave in the anistropic limit k| < k. : pressure balanced, §.: < §).

remaining fields are

@ 2

— ik &+ ke : 12.36
oy = THRLE kg = —i R Ry (12.36)
1) §

P2 (12.37)
Po Po

G ko

ob = Zkufzw =—i kaQ T 11 k”wa — 0, (12.38)
6B c?

B —ik & = Ry k- (12.39)

Thus, to lowest order in kj/ky, this wave involves no bending of the magnetic field,
but has a pressure/density perturbation and a magnetic-field-strength perturbation—the
latter in counter-phase to the former (Fig. 46). To be precise, the slow-wave perturbations
are pressure balanced:

B2 §p B2OB 20 | 0B
_ el =0. 12.4
5<p+8w) =ro +4 B po< P Bo) 0 (12.40)

The same is, of course, already obvious from the momentum equation (12.8), where, in
the limit k) < k) and w < kcg (“incompressible” perturbations; see §12.2), the dominant
balance is
B2
Vi (p + ) =0. (12.41)
8
Finally, the Alfvén waves in the limit of anisotropic propagation are just the same
as ever (§12.1.1)—they are unaffected by k,, while being perfectly capable of having
perpendicular variation (Fig. 43b).

12.1.6. High-8 Limit: c¢s > va

Another limit in which high-frequency acoustic response (fast waves) and low-
frequency, pressure-balanced Alfvénic response (slow and Alfvén waves) are separated
is B> 1 & cs > va.%® In this limit, the approxmate expression (12.31) for the
magnetosonic frequencies is still valid, but because v /cs, rather than kj/k, is small.

58This limit is astrophysically very interesting because magnetic fields locally produced by
plasma motions in various astrophysical environments (e.g., interstellar and intergalactic media)
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FIGURE 47. Slow wave in the high-g limit: pressure balanced, & ~ §).

The rest of the calculations in §12.1.5 are also valid, with the following simplifications
arising from va being negligible compared to cs.
The upper sign in (12.31) again gives us the fast wave, which, this time, is a pure sound

wave:
. (12.42)

This is natural because, at high 3, the magnetic pressure is negligible compared to
thermal pressure and sound can propagate oblivious of the magnetic field.

The lower sign in (12.31) yields the slow wave: (12.33) is still valid and becomes, for

A K Cg,
w = :tkH’UA . (1243)

Because the slow wave’s dispersion relation in this limit looks exactly like the dispersion
relation (12.19) of an Alfvén wave, it is called the pseudo-Alfvén wave. The similarity
is deceptive as the nature of the perturbation (the eigenvector) is completely different.
Substituting w? = kﬁvi into (12.14), we find

2
v
ki1&: + kaH = c—g‘ kaH < k”fH. (12.44)

This just says that, to lowest order in 1/8, V - & = 0, i.e., the perturbations are
incompressible. In contrast to the anisotropic case (12.35), the perpendicular and parallel
displacements are now comparable (assuming, in general, k ~ k1 ):

L_ R

6k (12.45)

Also in contrast to the anisotropic case, the density and pressure perturbations are now

can only be as strong energetically as the motions that make them [see (11.45) and §11.10] and
so, the latter being subsonic, va ~ u <K cs.
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FIGURE 48. General oblique magnetosonic waves.

vanishingly small, but the field can be bent as well as compressed:

o _ V3
Do = kLG RyGy) = —i o Ry = 0, (12.46)
5 §
ELP ) (12.47)
Po Po
k
8b = ik &ue = —i —- k&), (12.48)
ki
B .
F = 7Zklg$ = Zk:HfH (1249)
0

The 6B and 6b perturbations are in counter-phase, as are & and &, (Fig. 47). It is easy
to check that pressure balance (12.40) is again maintained by these perturbations.

In the more general case of oblique propagation (kj ~ ki) and finite beta (8 ~ 1),
the fast and slow magnetosonic waves generally have comparable frequencies and contain
perturbations of all relevant fields, with the fast waves tending to have the perturbations
of the thermal and magnetic pressure in phase and slow waves in counter-phase (Fig. 48).

12.2. Subsonic Ordering

Enough linear theory! We shall now occupy ourselves with the behaviour of finite
(although still small) perturbations of a straight-field equilibrium. While we abandon
linearisation (i.e., the neglect of nonlinear terms), much of what the linear theory has
taught us about the basic responses of an MHD fluid remains true and useful. In
particular, the linear relations between the perturbation amplitudes of various fields
provide us with a guidance as to the relative size of finite perturbations of these fields.
This makes sense if, while allowing the nonlinearities back in, we do not assume the
linear physics to be completely negligible, i.e., if we allow the linear and nonlinear time
scales to compete (§12.2.3). We shall see that solutions for which this is the case satisfy
self-consistent equations, so can be expected to be realisable (and, as we know from
experimental, observational and numerical evidence, are realised).

I shall start by constructing nonlinear equations that describe the incompressible limit,
i.e., fields and motions that are subsonic: both their phase speeds and flow velocities will



118 A. A. Schekochihin
be assumed small compared to the speed of sound:
k
_ 9k ) Ma= " <1, (12.50)
V2 43

V2 43

In this limit, we expect all fast-wave-like perturbations to disappear (in a similar way
to the sound waves disappearing in the incompressible Navier—Stokes hydrodynamics)
and for the MHD dynamics to contain only Alfvénic and slow-wave-like perturbations.
We saw in §§12.1.5 and 12.1.6 that, linearly, fast and slow waves are well separated
either in the limit of &y /k1 < 1 or in the limit of 3 > 1. Indeed, comparing the Alfvén
frequency (12.19) and slow-wave frequency (12.33) to the sound (fast-wave) frequency
(12.32), we get

Waltven _ Rjva k1 Wlow kjesva — ky VB

Wrast k\/Cg +Ui k \/1 B, Wreast ~ k(CZ +U?A‘) ?1 +ﬂ,

both of which are small in either of the two limits, satisfying the first of the conditions
(12.50).

The second condition (12.50) involves the “magnetic Mach number” Ma (generalised
to compare the flow velocity to the speed of sound in a magnetised fluid), which measures
the size of the perturbations themselves—in the linear theory, this was arbitrarily small,
but now we will need to relate it to our other small parameter(s), k/k or 1/3. This
means that we would like to construct an asymptotic ordering in which there will be
some prescription as to how small, or otherwise, various (relative) perturbations and
small parameters are—not by themselves, i.e., compared to 1, but compared to each
other (compared to 1, the small parameters can all formally be taken to be as small as
we desire).

The general strategy for ordering perturbations with respect to each other will be to
use the linear relations obtained in the two incompressible limits (kj/k < 1 or 8> 1).
If we do not specifically expect one perturbation to be larger or smaller than another on
some physical grounds (like the properties of the linear response), we must order them
the same; this does not stop us later from constructing subsidiary expansions in which
they might be different. For example, MHD equations themselves were an expansion
a number of small parameters, in particular u/c [see (11.14)]. However, at the time of
deriving them, we did not want to rule out sonic or supersonic motions and so, effectively,
we ordered Ma ~ 1, kj/k ~ 1 and 3 ~ 1, as far as the u/c expansion was concerned, i.e.,
Ma, kj/k, 1/8 > u/c. Now we are constructing a subsidiary expansion in these other
parameters, keeping in mind that they are allowed to be small but not as small as the
small parameter already used in the derivation of the MHD equations.?”

(12.51)

12.2.1. Ordering of Alfvénic Perturbations

Since the Alfvénic perturbations decouple completely from the rest (§12.1.1), linear
theory does not give us a way to relate u, to u), so we will exercise the no-prejudice
principle stated above and assume

Uy ~ Uy, (12.52)

59In principle, you should always feel a little paranoid about the question of whether such
“nested” asymptotic expansions commute, i.e., whether it matters in which order they are done.
They usually do commute, but you ought to check if you want to be sure. Another formally
justified mathematical worry is whether asymptotic solutions of exact equations are the same as
exact solutions of asymptotic equations. This will lead you into the world of proofs of existence
and uniqueness—where I wish you an enjoyable stay.
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i.e., the Mach numbers for the Alfvénic and slow-wave-like motions are comparable. We
can, however, relate u, to 6b, via the curvature-force response (12.20):

k
16b] ~ k& ~ ”5” ~ =L~ May/1+5. (12.53)
A

12.2.2. Ordering of Slow-Wave-Like Perturbations

For slow-wave-like perturbations, in either the anisotropic or the high-g limit, from
(12.14) and (12.33),

2 2
w v Ky

Veurwlkibe TRiG) ~ g @l ~ g b~ T
S S

(12.54)

Thus, the divergence of the flow velocity is small (the dynamics are incompressible) in
all three of our (potentially) small parameters:

V-u ko1 Ma
ky/2+v3 k148

From this, we can immediately obtain an ordering for the density and pressure pertur-
bations: using (12.3), (12.4), (12.33) and (12.54) [cf. (12.36) and (12.46)],

dp op V-u Ma
—_— — Y V . N — Y
Po Do ¢ w VB

The magnetic-field-strength (magnetic-pressure) perturbation is, using (12.39) and
(12.33) [cf. (12.49)],

(12.55)

(12.56)

6B 62, k”u”
— ~ k€~ s 11~ Ma, 12.57
By IRS 2 + U12§ w \/B a ( )
or, perhaps more straightforwardly, from pressure balance (12.40) and using (12.56),
0B B ép
— = ——— ~ /B Ma. 12.58
B~ ap "~ VP (12.58)

Finally, in a similar fashion, using (12.17) and (12.57) [cf. (12.38) and (12.48)], we find

k
16b] ~ ks ~ ﬁ V/BMa (12.59)

for slow-wave-like perturbations. Note that in all interesting limits this is superceded by
the Alfvénic ordering (12.53).

12.2.3. Ordering of Time Scales

Let us recall that our motivation for using linear relations between perturbations to
determine their relative sizes in a nonlinear regime was that linear response will lose
its exclusive sway but remain non-negligible. In formal terms, this means that we must
order the linear and nonlinear time scales to be comparable.?? The nonlinearities in MHD
equations are advective, i.e., they are of the form w - V(stuff) and similar, so the rate
of nonlinear interaction is ~ ku (in the case of anisotropic perturbations, ~ kju, ).
Ordering this to be comparable to the frequencies of the Alfvén and slow waves [see

5In the context of MHD turbulence theory, this principle, applied at each scale, is known as
the critical balance (see §12.4).
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(12.51)] gives us

|1
ven ™ k = Ma ~ — y 12.60
Walf u 2~ L TTS (12.60)
k
Waow ~ ku =  Ma ~ ki VB (12.61)

Note that the first of these relations supersedes the second in all interesting limits.

12.2.4. Summary of Subsonic Ordering

Thus, the ordering of the time scales determines the size of the perturbations
via (12.60). Using this restriction on Ma, we may summarise our subsonic ordering as
follows®!

U |0b] 1 0B 5p (5]) k’“ 1
Ma = — <1 12.62
T VErw VIiB VBB f f T+7 (1262)

and w ~ ku. The ordering can be achieved either in the limit of k/k < 1 or 1/ < 1,
or both. Note that if one of these parameters is small, the other can be order unity or
even large (as long as it is not larger than the inverse of the small one).

The case of anisotropic perturbations and arbitrary (§ applies in a broad range of
plasmas, from magnetically confined fusion ones (tokamaks, stellarators) to space (e.g.,
the solar corona or the solar wind). We shall consider the implications of this ordering
in §12.3.

The case of high 8 applies, e.g., to high-energy galactic and extragalactic plasmas.
It is the direct generalisation to MHD of incompressible Navier—Stokes hydrodynamics,
i.e., in this case, all one needs to do is solve MHD equations assuming p = const and
V - u = 0. We shall consider this case now.

12.2.5. Incompressible MHD Equations

Assuming 8 > 1, our ordering becomes

u w 1 p 5p Ma
—~—~— ~Ma, [ib]~ B~ Ma~1, — ~— ~ Ma?
s kes /B 98] ~ Vo Po Do \/B

(12.63)

Thus, the density and pressure perturbations are minuscule, while magnetic perturbations
are order unity—magnetic fields are relatively easy to bend (i.e., subsonic motions can
tangle the field substantially in this regime). Because of this, it will not make sense to
split B into By and 6B explicitly, we will treat the magnetic field as a single field, with
no need for a strong mean component.

Let us examine the MHD equations (11.57-11.60) under the ordering (12.63).

Since w ~ ku, the convective derivative d/dt = 9/0t + u - V survives intact in all
equations, allowing the advective nonlinearity to enter.

The continuity equation (11.57) simply reiterates our earlier statement that the velocity
field is divergenceless to lowest order:

1dp p

V. u=—---"F~wL ~Ma’k 0. 12.64
u Sl wpo a’keg — ( )

5'Note that it is not absolutely necessary to work out the detailed linear theory of a set of
equations in order to be able to construct such orderings: it is often enough to know roughly
where you are going and simply balance terms representing the physics that you wish to keep
(or expect to have to keep). An example of this approach is given in §12.2.8.
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The momentum equation (11.58) becomes

g 26p  B*\ B-VB
(1+%) (6“+u~Vu> - v <csp+ )+ VB (12.65)
0/ \ Ot v po  8mpo 4mpo
— ———
=p

The density perturbation in the left-hand side is ~ Ma? and so negligible compared to
unity. The remaining terms in this equation are all the same order (~ MaZ?kc2) and so
they must all be kept. The total “pressure” p is determined by enforcing V - u = 0 [see
(12.64)]. Namely, our equations are

%+u.vu:_Vﬁ+B.VB , (12.66)

where
V) =—-VV : (uu — BB) (12.67)

and we have rescaled the magnetic field to velocity units, B/+/4wpy — B.

In the induction equation, best written in the form (11.27), all terms are the same
order ~ kuB ~ MakcsB except the one containing V - u, which is ~ Ma®ke,B and so
must be neglected. We are left with

%—Jeru-VB:B-Vu . (12.68)

Finally, the internal-energy equation (11.60), which, keeping only the lowest-order

terms, becomes
0 op (5p)
Ztu- V] [E-—yL) =0, 12.69
<8t ) <Po i ( )

can be used to find dp/pg, once dp/py = v(p — B?/2)/c? is calculated from the solution
of (12.66-12.68). Note that dp/py is merely a spectator quantity, not required to solve
(12.66-12.68), which form a closed set.

Equations (12.66-12.68) are the equations of incompressible MHD (let us call it
iMHD). Note that while they have been obtained in the limit of § > 1, all 5 dependence
has disappeared from them—Dbasically, they describe subsonic dynamics on top of an
infinite heat bath. This is how it should be: formally, in any good asymptotic theory,
it must be possible to make the small parameter artbitrarily small without changing
anything in the equations.

Exercise 12.1. Show that iMHD conserves the sum of kinetic and magnetic energies,
d (s (v  B*\

Exercise 12.2. Check that you can obtain the right waves, viz., Alfvén (§12.1.1) and pseudo-
Alfvén (§12.1.6), directly from iMHD.

12.2.6. Elsasser MHD

The iMHD equations possess a remarkable symmetry. Let us introduce Elsasser (1950)
fields

Z*=u+B (12.71)
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and rewrite (12.66) and (12.68) as evolution equations for Z=: after trivial algebra,

0Z*
ST ZT.vzZt=-Vp (12.72)
and, since V - Z* = 0,
ViH=-VV:Z"Z". (12.73)

Thus, one can think of iMHD as representing the evolution of two incompressible “velocity
fields” advecting each other.

Let us restore the separation of the magnetic field into its mean and perturbed parts,
B = Bj + 0B = vaz + 0B (recall that B is in velocity units). Then

ZT = topz+6Z* (12.74)
and (12.72) becomes

96Z*
ot

FuaV0ZF +6Z7F - VéZF = —Vj]|. (12.75)

Thus, 6Z7 are finite, counter-propagating (at the Alfvén speed vp ) perturbations—and
they interact nonlinearly only with each other, not with themselves. If we let, say, 2~ =
0 < u = 0B, then 6Z" satisfies

26Z™*
ot

—vAV 627 =0, (12.76)

and similarly for 6Z~ (propagting at —va) if 62" = 0. Therefore,
0Z* = f(r £vatz), 0ZF =0, (12.77)

where f is an arbitrary function, are exact nonlinear solutions of iMHD. They are called
Elsasser states. Physically, they are isolated Alfvén-wave packets that propagate along
the guide field and never interact (because they all travel at the same speed and so can
never catch up with or overtake one another). In order to have any interesting nonlinear
dynamics, the system must have counter-propagating Alfvén-wave packets (see §12.4).

12.2.7. Cross-Helicity

Equations (12.72) manifestly support two conservation laws:
d |Z:t ‘2
— [dr = =0 12.78
G [ar T —o (12.78)

i.e., the energy of each Elsasser field is individually conserved. This can be reformulated
as conservation of the total energy,

d [ 1(1Z? |1Z7 P\ _d [, (u® B\

and of a new quantity, known as the cross-helicity:

d [ 1(1Z'] |Z7P\_d [ _
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In the Elsasser formulation, the cross-helicity is a measure of energy imbalace between
the two Elssasser fields®2—this is observed, for example, in the solar wind, where there
is significantly more energy in the Alfvénic fluctuations propagating away from the Sun
than towards it (see, e.g., Wicks et al. 2013).

Exercise 12.3. To see why we needed incompressibility to get this new conservation law, work
out the time evolution equation for [ d3®r u - B from the general (compressible) MHD equations
and hence the condition under which the cross-helicity is conserved.

12.2.8. Stratified MHD

It is quite instructive to consider a very simple example of non-uniform MHD equilibrium:
the case of a stratified atmosphere. Let us introduce gravity into MHD equations, viz., the
momentum equation (11.58) becomes

du B2 B-VB .
P = -V <p+ 87) + . P9E (12.81)

(uniform gravitational acceleration pointing downward, against the z direction). We wish to
consider a static equilibrium inhomogeneous in the z direction and threaded by a uniform
magnetic field (which may be zero):

po = po(Z), Po = po(z), ug = 0, Bo = Bobo = COIlSt7 (12.82)

where by is at some general angle to 2 and po(z) and po(z) are constrained by the vertical force
balance:

dpo B podlnpoicg 1
dz P9 T 9= po dz v Hp’

where it has been opportune to define the pressure scale height H,. We shall now seek time-
dependent solutions of the MHD equations for which

(12.83)

10 1)
p = po(2) + dp, pﬁ <1, p=po(z)+dp, pl <1, (12.84)
0 0

and the spatial variation of all pertubations occurs on scales that are small compared to the
pressure scale height H, or the analogously defined density scale height H, = —(dIn po/dz)f1
(for ordering purposes, we denote them both H):

. (12.85)

After the equilibrium pressure balance is subtracted from (12.81), this equation becomes,
under any ordering in which dp < po,

2 .
v _ ¢ (5p+ B—) LB VB _ sl (12.86)

po dt 8w 47

The last term is the buoyancy (Archimedes) force. In order for this new feature to give rise to
any nontrivial new physics, it must be ordered comparable to all the other terms in the equation:
using (12.83) to express g ~ po/poH, we find

4 6 )

P kL s P (12.87)
Po Po Po

kB” o kH

= L1 = B> EH>1 (12.88)
4m po B
So we learn that the density perturbations must now be much larger than the pressure pertur-
bations, but, in order for the former to remain small and for the magnetic field to be in the

pg ~ kép =

dpg ~

52 Cross-helicity can also be interpreted as a topological invariant, counting the linkages between
flux tubes and vortex tubes analogously to what magnetic helicity does for the flux tubes alone
(see §13.2).
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game, S must be high (it is in anticipation of this that we did not split B into By and B,
expecting them to be of the same order).

Let us now expand the internal-energy equation (11.60) in small density and pressure pertur-
bations. Denoting s = p/p” = so(z) + 0s (entropy density) and introducing the entropy scale
height

1 dln sg 1

_ 2
= =——+ — 12.89
H dz H, + H, ( )
(assumed positive), we find®?
d és Uy os  Op p o
cos_ e 8 _% ¥ P 12.90
dt so H; S0 Po K Po 7 o ( )

The last, approximate, expression follows from the smallness of pressure perturbations [see
(12.87)]. This then gives us

d & Uy
— 12.91
dt po ’YHS ( )
But, on the other hand, the continuity equation (11.57) is
d o Uy 1 1 Uy V-u 1
— X =_V.- _= = vV . =U, | — — = = ~ — 1.
dt po ur H, e (Hp ’YHS) vHp ku kH <
(12.92)

Thus, the dynamics are incompressible again and the role of the continuity equation is to tell
us that we must find Jp from the momentum equation (12.86) by enforcing V - u = 0 to lowest
order. The difference with iMHD (§12.2.5) is that dp/p now participates in the dynamics via the
buoyancy force and must be found self-consistently from (12.91).

Finally, we rewrite our newly found simplified system of equations for a stratified, high-g8
atmosphere, in the following neat way:

%—?Jru»Vu:fVﬁJrB'VBJra%, (12.93)
V% = —VV : (uu— BB) + %, (12.94)
%Jrqua:szuz, N:W%I_Ip’ (12.95)
%—? +u-VB=B-Vu, (12.96)
where we have rescaled B/\/4mpo — B and denoted the Archimedes acceleration
e ¥ _ % a (12.97)

g ,
po po vYHp

a quantity also known as the buoyancy of the fluid. We shall call (12.93-12.96) the equations of
stratified MHD (SMHD).

A new frequency N, known as the Brunt—Vdisdld frequency, has appeared in our equations.
In order for all the linear and nonlinear time scales that are present in our equations to coexist
legitimately within our ordering, we must demand that the Alfvén, Brunt—Vaisild and nonlinear
time scales all be comparable:

64

1 1

This gives us a relative ordering between all the small parameters that have appeared so far,

53We are able to take equilibrium quantities in and out of spatial derivatives because kH > 1
and the perturbations are small.
64N is real because we assumed Hs > 0 (a “stably stratified atmosphere”), otherwise

the atmosphere becomes convectively unstable—this happens when the equilibrium entropy
decreases upwards (cf. §14.3, Q9 and Q5c).
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including the new one, 1/kH. Using (12.91) and recalling (12.87), let us summarise the ordering
of the perturbations:
& ) 0B
Lo ® Ma, 2 Ma? 6b] ~ == ~ 1.
Cs o Po Bo
The difference with the iMHD high-3 ordering (12.63) is that the density perturbations have
now been promoted to dynamical relevance, thankfully without jeopardising incompressibility
(i.e., still ordering out the sonic perturbations). The ordering (12.99) can be thought of as a
generalisation to MHD of the Boussinesq approximation in hydrodynamics.
Further investigations of the SMHD equations are undertaken in Q5.

(12.99)

12.3. Reduced MHD

We now turn to the anisotropic ordering, kj/k < 1 (while 8 ~ 1, in general), for which
we studied the linear theory in §12.1.5. Specialising to this case from our general ordering
(12.62), we have

uyp U 0B o Op w k|
Ma~ —~ L ~|dbl~—~ =~ v — ~ L x1]. 12.100
Cs Cs 100] By po po  kics kL ( )

Starting again with the continuity equation (11.57), dividing through by po and
ordering all terms, we get

0 & 4
(é)t 4w, -V, +u |) ® =—<1—|— %)(VL'UL—FVWO' (12.101)
< —— Fo, Lo "—’M —
Ma Ma Ma? Ma Ma 2 Ma
Ma2 Ma

Thus, to lowest order, the perpendicular velocity field is 2D-incompressible:

O(Ma) : . (12.102)

In the next order (which we will need in §12.3.2),

OMa?): (V- -u)y=— ( +u, -V, (12.103)

) p  ddp
Po dt po’
where, to leading order, the convective derivative now involves only perpendicular ad-
vection.

Equation (12.102) implies that w, can be written in terms of a stream function:

up =2xV, 0| (12.104)

Similarly, for the magnetic field, we have

0=V-B=V, 0B, +YBf~V, 0B, (12.105)
—_—— =

Ma Ma?

so 0B is also 2D-solenoidal and can be written in terms of a flux function:

=2 xV 7. (12.106)

Note that ¥ = — A /y/4mpo, the parallel component of the vector potential.
Thus, Alfvénically polarised perturbations, w; and éB (see §12.1.1), can be described
by two scalar functions, @ and ¥. Let us work out the evolution equations for them.
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12.3.1. Alfvénic Perturbations

We start with the induction equation, again most useful in the form (11.27). Dividing
through by By, we have

d 6B
—— = 12.1
& By =b-Vu—->bV -u. (12.107)

Throwing out the obviously subdominant db contribution in the last term on the right-
hand side (i.e., approximating b ~ % in that term), then taking the perpendicular part
of the remaining equation, we get

——L= =b-Vu,. (12.108)

As we saw above, the convective derivative is with respect to the perpendicular velocity
only and, in view of the stream-function representation (12.104) of the latter, for any
function f, we have, to leading order,

df _of _9f _9f
Friaien +u, -V, f= T +2- (V1O xV, f)= ot +1{2, f}, (12.109)
where the “Poisson bracket” is
_0®0f 0POf
{2, f} = 9x 9y Dy Oz (12.110)
Similarly, to leading order,
b-Vf= gf—i—éb v f—a—f+— (VU xV_ f)= gf+7{y7 f}. (12.111)
VA

Finally, using (12.109) and (12.111) in (12.108) and expressing dB in terms of ¥ [see
(12.106)] and u, in terms of @ [see (12.104)], it is a straightforward exercise to show,
after “uncurling” (12.108), that®

ov 845

o T2 =vag (12.112)

Turning now to the momentum equation (11.58), taking its perpendicular part and
dividing through by p =~ py, we get

dUJ_ 1 B2 BV(SBJ_ Cq (5}7 (5B 6BL
— = |- )= == e b- .
{ Vl<p+87f)+ Am } Vl(w) +ABo FRb Vs

dt Po 0
M&2 Ma MaQ
(12.113)
To lowest order,
c2 op (5B> op v2 0B
OMa): Vo [(==+v =0 = |—=-—2 : 12.114
(Ms) J_<7100 "B, Do 70230 ( )

This is a statement of pressure balance, which is physically what has been expected [see
(12.41)] and which will be useful in §12.3.2. In the next order, (12.113) contains the
perpendicular gradient of the second-order contribution to the total pressure. To avoid

65 Another easy route to this equation is to start from the induction equation in the form (11.59),
let B=V x A, “uncurl” (11.59) and take the z component of the resulting evolution equation
for A.
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having to calculate it, we take the curl of (12.113) and thus obtain

du 0B
By
Finally, using again (12.104), (12.106), (12.109) and (12.111) in (12.115), some slightly

tedious algebra leads us to

0 0
—V3id+ {0, V2D} =
It +{ }=va= B
Note that V2 @ is the vorticity of the flow w, and so the above equation is the MHD
generalisation of the 2D Euler equation.

To summarise the equations (12.116) and (12.112) in their most compact form, we
have

ViU 4+ {o,Viu}|. (12.116)

dtvl@ — uAb- VV2 9, (12.117)
aw o
=, (12.118)

where the convective time derivative d/d¢ and the parallel spatial derivative b-V are given
by (12.109) and (12.111), respectively. Beautifully, these nonlinear equations describing
Alfvénic perturbations have decoupled completely from everything else: we do not need
to know dp, p, u) or 6B in order to solve for w; and 6B . Alfvénic dynamics are self-
contained.

Equations (12.117) and (12.118) are called the Equations of Reduced MHD (RMHD).
They were originally derived in the context of tokamak plasmas (Kadomtsev & Pogutse
1974; Strauss 1976) and are extremely popular as a simple paradigm for MHD is a strong
guide field—not just in tokamaks, but also in space.%6

12.3.2. Compressive Perturbations

What about the rest of our fields—in the linear language, the slow-wave-like pertur-
bations (§12.1.5)? While we do not need them to compute the Alfvénic perturbations,
we might still wish to know them for their own sake.

Returning to the induction equation (12.107) and taking its z component, we get

d 6B B §
Sy V- Vou = dt(—p)—b-Vu|

12.119
dt By Bo po ( )

where all terms are O(Ma?), 0B ~ B to leading order and we used (12.103) to express
V -u. The derivatives d/dt and b- V contain the nonlinearities involving ¢ and ¥, which
we already know from (12.117) and (12.118).

To find an equation for u), we take the z component of the momentum equation
(11.58):

duH 1 0 2 B - V(SBH duH B

—_ = — — — _ 2b- . 12.12
dt o [ &r ) T an = | T b Vg (12.120)

~~ —_— e —

Ma? Ma3 Ma?

56In the latter context, they are used most prominently as a description of Alfvénic turbulence
at small scales (see §12.4), for which the RMHD equations can be shown to be the correct
description even if the plasma is collisionless and in general requires kinetic treatment
(Schekochihin et al. 2009; Kunz et al. 2015, 2018).
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The parallel pressure gradient is @(Ma®) because there is pressure balance (12.114) to
lowest order.
Finally, let us bring in the energy equation (11.60), as yet unused. To leading order,

it is

d és d [/ép ) d (& v%6B

dos _dfop_ PN _, S 2L 12.121
dtsp dit (po 7po) MR <P0+C§BO 7 ( )

where, to obtain the final version of the equation, we substituted (12.114) for dp/po.
Equations (12.119-12.121) are a complete set of equations for 6B, v and dp, given @
and ¥. These equations are linear in the Lagrangian frame associated with the Alfvénic
perturbations, provided the parallel distances are measured along perturbed field lines.
Physically, they tell us that slow waves propagate along perturbed field lines and are
passively (i.e., without acting back) advected by the perpendicular Alfvénic flows.

Exercise 12.4. Check that the linear relationships between various perturbations in a slow
wave derived in §12.1.5 are manifest in (12.119-12.121).

In what follows, when we refer to RMHD, we will mean all five equations (12.117—
12.118) and (12.119-12.121).

Exercise 12.5. Show that RMHD equations possess the following exact symmetry: Ve and a,
one can simultaneously scale all perturbation amplitudes by €, perpendicular distances by a,
parallel distances and times by a/e. This means that parallel and perpendicular distances in
RMHD are effectively measured in different units. It also means that the small parameter Ma
in RMHD can be made arbitrarily small, without any change in the form of the equations, so
RMHD is a bona fide asymptotic theory (see remark at the end of §12.2.5).

12.3.3. Elsasser Fields and the Energetics of RMHD

The Elsasser approach (§12.2.6) can be adapted to the RMHD system. Defining
Elsasser potentials

B
(F=0+V| & Zt=u, + \/ﬁzzxvgi, (12.122)

it is a straighforward exercise to show that the “vorticities” of the the two Elsasser fields,

wt =2 (V. x0Zt)=v3¢E (12.123)

(fluid vorticities £ electric currents), satisfy the following evolution equation

Ow* Ow*
B S 4 ((FLwt) = {9;¢F,0;,¢7)

o o (12.124)

where summation over the repeated index j is implied. The main corrolary of this
equation is the same as in §12.2.6, although here it applies to perpendicular perturbations
only: only counter-propagting Alfvénic perturbations can interact and any finite-amplitude
perturbation composed of just one FElsasser field is a nonlinear solution.

Some light is perhaps shed on the nature of the interaction between Elasser fields if we notice
that the left-hand side of (12.124) tells us that the Elsasser vorticity wt is propagated along
the mean field at the speed va and advected across the field by the Elsasser field 5Zf The
right-hand side of (12.124) is a kind of vortex-stretching term, implying a tendency for vortices
and current layers to be produced in the (x,y) plane. There is a preference for current layers,
as it turns out. The term in the right-hand side of (12.124) has opposite signs for the two
Elsasser fields. Therefore, arguably, nonlinear dynamics favour wtw™ < 0, i.e., |[V2¥|*> > |V2 &|?
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(larger currents than vorticities). This is, indeed, what is seen in numerical simulations of MHD
turbulence (see Zhdankin et al. 2016 and §12.4).

The energies of the two Elsasser fields are individually conserved (cf. §12.2.7),

pr Er |V i CE)P? = d /d3 0Z%|? = (12.125)

i.e., when the two fields do interact, they scatter each other nonlinearly, but do not
exchange energy.
There is an Elsasser-like formulation for the slow waves as well:%7

B v2
E =+ —— 1+ 2. 12.126
=M VT ( )

Then, from (12.119-12.121), one gets, after more algebra,
a(szi v a&zi

\/62 +v3 az

1 L Ve N P
2 (”W)“ ‘5“*( m)“ '

(12.127)

Note the (expected) appearance of the slow-wave phase speed [cf. (12.33)] in the left-hand
side. Thus, slow waves interact only with Alfvénic perturbations—when vy < ¢, only
with the counterpropagating ones, but at finite 3, because the slow waves are slower, a
co-propagating Alfvénic perturbation can catch up with a slow one, have its way with it
in passing and speed on (it’s a tough world).

There is no energy exchange in these interactions: the “+” and “—” slow-wave energies
are individually conserved:

d
a3 52 . 12.12
G [eriazee =o (12.128)

12.3.4. Entropy Mode

There are only two equations in (12.127), whereas we had three equations (12.119-
12.121) for our three compressive fields 0B, u and dp. The third equation, (12.121), was
in fact for the entropy perturbation:

dos ds b vi B
— 2o AT 12.12
dt 0 ’ So v <p0 + Cg B() ( 9)

We see that s is a decoupled variable, independent from (* or 5Zﬁt (because it is the

only one that involves dp/po). Equation (12.129) says that ds is a passive scalar field,
simply carried around by the Alfvénic velocity w, (via d/dt). At high 3, this is just a
density perturbation.

The associated linear mode is not a wave: its dispersion relation is

: (12.130)

This is the (famously often forgotten) 7th MHD mode, known as the entropy mode (there

57 At high 8, va < cs, 50 we recover from (12.126) and (12.122) the Elsasser fields as defined for
iMHD in (12.71).
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are 7 equations in MHD, so there must be 7 linear modes: two fast waves, two Alfvén
waves, two slow waves and one entropy mode).

Exercise 12.6. Go back to §12.1 and find where we overlooked this mode.

Since the entropy mode is decoupled, its “energy” (variance) is individually conserved:

d
o d3r|6s]> = 0. (12.131)

Thus, in RMHD, the (nonlinear) evolution of all perturbations is constrained by 5 separate
conservation laws: [d®r [6Z[?, [d®r |5Z|j‘E 2 and [d3r|8s|? are all invariants.

12.3.5. Discussion

Such are the simplifications allowed by anisotropy. Besides greater mathematical
simplicity, what is the moral of this story, physically? Let me leave you with two
observations.

e In a strong magnetic field, linear propagation is a parallel effect, whilst nonlinearity
is a perpendicular effect (advection by w,, adjustment of propagation direction by
0B ). RMHD equations express the idea that linear and nonlinear physics play equally
important role—this becomes the fundamental guiding principle in the theory of MHD
turbulence (§12.4). The idea is that complicated nonlinear dynamics that emerge in the
perpendicular plane get teased out along the field because propagating waves enforce a
degree of parallel spatial coherence. The distances over which this happens are determined
by equating linear and nonlinear time scales, kjva ~ kju,. Dynamics cannot stay
coherent over distances longer than ~ k[l determined by this balance because of
causality: points separated by longer parallel distances cannot exchange information
quickly enough to catch up with perpendicular nonlinearities acting locally at each of
these points. This principle is called critical balance.

e Restricting the size of perturbations to be small made the RMHD system, in a
certain sense, “less nonlinear” than the full MHD (or than iMHD, where 6B/By ~ 1 was
allowed). This led to the system’s dynamics being constrained by more invariants: the
MHD energy invariant got split into 5 individually conserved quadratic quantities.

Exercise 12.7. You might find it an interesting excercise to think about properties of the
RMHD system in 2D, in the light of the two observations above. How many invariants are there?
In what kind of physical circumstances can we use 2D RMHD without necessarily expecting
parallel coherence of the system to break down by the causality argument?

12.4. MHD Turbulence

RMHD is a good starting point for developing the theory of MHD turbulence—a phenomenon
observed with great precision in the solar wind and believed ubiquitous in the Universe. I am
writing a tutorial review of this topic—a reasonably advanced draft can be found here: http:
//www-thphys.physics.ox.ac.uk/research/plasma/JPP/papersl17/schekochihin2a.pdf.

13. MHD Relaxation

So far, we have only considered MHD in a straight field against the background of
constant density and pressure (except in §12.2.8, where this was generalised slightly). As
any more complicated (static) equilibrium will locally look like this, what we have done


http://www-thphys.physics.ox.ac.uk/research/plasma/JPP/papers17/schekochihin2a.pdf
http://www-thphys.physics.ox.ac.uk/research/plasma/JPP/papers17/schekochihin2a.pdf
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has considerable universal significance. Now we shall occupy ourselves with a somewhat
less universal (i.e., dependent on the circumstances of a particular problem) and more
“large-scale” (compared to the dynamics of wavy perturbations) question: what kind of
(static) equilibrium states are there and into which of those states will an MHD fluid
normally relax?

13.1. Static MHD FEquilibria

Let us go back to the MHD equations (11.57-11.60) and seek static equilibria, i.e., set
u = 0 and §/9t = 0. The remaining equations are

i< B
IX2 j:foB, V.B=0 (13.1)
™

—Vp+

(the force balance, Ampere’s law and the solenoidality-of-B constraint). These are 7
equations for 7 unknowns (p, B, j), so a complete set. Density is irrelevant because
nothing moves and so inertia does not matter.

The force-balance equation has two immediate general consequences:

B-Vp=0, (13.2)
so magnetic surfaces are surfaces of constant pressure, and
7-Vp=0, (13.3)

so currents flow along those surfaces.
Equation (13.2) implies that if magnetic field lines are stochastic and fill the volume
of the system, then p = const across the system and so the force balance becomes

jxB=0. (13.4)
Such equilibria are called force-free and turn out to be very interesting, as we shall

discover soon (from §13.1.2 onwards).

13.1.1. MHD Equilibria in Cylindrical Geometry

As the simplest example of an inhomogeneous equilibrium, let us consider the case of
cylindrical and axial symmetry:

0 0
i — =0. 13.
20 0, P 0 (13.5)
Solenoidality of the magnetic field then rules out it having a radial component:
1
V-B= 782 rB,=0 = rB,=const = B,=0. (13.6)
ror

Ampere’s law tells us that currents do not flow radially either:

erOa

. - _C 0B

]:EVXB = Jo = Ir or (13.7)
._c¢clo
jz_47rr8r 0
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(a) (b) Plasma is confined.
FIGURE 49. z pinch.

Finally, the radial pressure balance gives us

ap (.7 X B)T jQBz 7sz9 1 aBz B0 a
or c c 4 = or r (’“)TT 0
0 B? Bg 0 Bg 0 B2 Bg
——Tz_Z6_ 2% — —)=-20, 13.
or 8m  4nr  Or 87w or (p 87T> 4y (13.8)

This simply says that the total pressure gradient is balanced by the tension force. A
general equilibrium for which this is satisfied is called a screw pinch.

One simple particular case of this is the z pinch (Fig. 49a). This is achieved by letting
a current flow along the z axis, giving rise to an azimuthal field:
c1l0 4 1

By = Bgz—f/ dr'r’j. ("), B.=0. (13.9)
0

=0, .= 1o
Jo Jz 4 r Or cr

Equation (13.8) becomes

Op 1
— =—_ . 13.1
(91" CJZBQ ( 3 0)

The “pinch” comes from magnetic loops and is due to the curvature force: the loops
want to contract inwards, the pressure gradient opposes this and so plasma is confined
(Fig. 49b). This configuration will, however, prove to be very badly unstable (§14.4)—
which does not stop it from being a popular laboratory set up for short-term confinement
experiments (see, e.g., review by Haines 2011).

Another simple particular case is the € pinch (Fig. 50a). This is achieved by imposing
a straight but radially non-uniform magnetic field in the z direction and, therefore,
azimuthal currents:

c 0B,
By=0, j.=0, jg=——-"2 13.11
0 =0, j Jo==1-"5 (13.11)
Equation (13.8) is then just a pressure balance, pure and simple:
0 B?
— 21 =0]. 13.12
or (p * 87r> ( )

In this configuration, we can confine the plasma (Fig. 50c) or the magnetic flux (Fig. 50d).
The latter is what happens, for example, in flux tubes that link sunspots (Fig. 50b). The
0 pinch is a stable configuration (Q10).

The more general case of a screw pinch (13.8) is a superposition of z and 8 pinches, with
both magnetic fields and currents wrapping themselves around cylindrical flux surfaces.
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o '9 ~ 10"k
—/j j 7 ~30006G

r‘é@ PO

sunspofs

(b) Coronal loop.
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(c) Plasma is confined. (d) Magnetic field is confined.
FIGURE 50. 0 pinch.
The next step in complexity is to assume axial, but not cylindrical symmetry (9/90 = 0,

0/0z # 0). This is explored in Q8.
For a much more thorough treatment of MHD equilibria, the classic textbook is Freidberg (2014).

13.1.2. Force-Free Equilibria

Another interesting and elegant class of equilibria arises if we consider situations in
which Vp is negligible and can be completely omitted from the force balance. This can
happen in two possible sets of circumstances:

—pressure is the same across the system, e.g., because the field lines are stochastic
[a previously mentioned consequence of (13.2)];

—fB = p/(B?/87) < 1, so thermal energy is negligible compared to magnetic energy and
so p is irrelevant.

A good example of the latter situation is the solar corona, where 8 ~ 1—10~% (assuming
n ~ 102 cm™3, T ~ 102 eV and B ~ 1 — 10®> G, the lower value applying in the
photosphere, the upper one in the coronal loops; see Fig. 50b)

In such situations, the equilibrium is purely magnetic, i.e., the magnetic field is “force-
free,” which implies that the current must be parallel to the magnetic field:

4
= jlB = %j:VxB:a(r)B, (13.13)

where a(r) is an arbitrary scalar function. Taking the divergence of the last equation
tells us that

B -Va=0, (13.14)
so the function «a(r) is constant on magnetic surfaces. If B is chaotic and volume-filling,

then a = const across the system.
The case of a = const is called the linear force-free field. In this case, taking the curl
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of (13.13) and then iterating it once gives us

—~V’B=aVxB=ao’B = |(V’+a?)B=0], (13.15)

so the magnetic field satisfies a Helmholtz equation (to solve which, one must, of course,
specify some boundary conditions).

Thus, there is, potentially, a large zoo of MHD equilibria. Some of them are stable,
some are not, and, therefore, some are more interesting and/or more relevant than others.
How does one tell? A good question to ask is as follows. Suppose we set up some initial
configuration of magnetic field (by, say, switching on some current-carrying coils, driving
currents inside plasma, etc.)—to what (stable) equilibrium will this system eventually
relax?

In general, any initially arranged magnetic configuration will exert forces on the
plasma, these will drive flows, which in turn will move the magnetic fields around;
eventually, everything will settle into some static equilibrium. We expect that, normally,
some amount of the energy contained in the initial field will be lost in such a relaxation
process because the flows will be dissipating, the fields diffusing and/or reconnecting,
etc.—the losses occur due to the resistive and viscous terms in the non-ideal MHD
equations derived in §11. Thus, one expects that the final relaxed static state will be a
manimum-energy state and so we must be able to find it by minimising magnetic energy:

BZ
/d3r —— — min. (13.16)
8T

Clearly, if the relaxation occured without any constraints, the solution would just be
B = 0. In fact, there are constraints. These constraints are topological: if you think
of magnetic field lines as a tangled mess, you will realise that, while you can change
this tangle by moving field lines around, you cannot easily undo linkages, knots, etc.—
anything that, to be undone, would require the field lines to have “ends”. This intuition
can be turned into a quantitative theory once we discover that the induction equation
(11.59) has an invariant that involves the magnetic field only and is, in a certain sense,
“better conserved” than energy.

13.2. Helicity
Magnetic helicity in a volume V is defined as

H= / d*rA-B], (13.17)
v
where A is the vector potential, V x A = B.
13.2.1. Helicity Is Well Defined
This is not obvious because A is not unique: a gauge transformation
A— A+ Vy, (13.18)

with x an arbitrary scalar function, leaves B unchanged and so does not affect physics.
Under this transformation, helicity stays invariant:

H—>H+/d3rB~VXzH+/ dS-Byx=H, (13.19)
1% v

provided B at the boundary is parallel to the boundary, i.e., provided the volume V'
encloses the field (nothing sticks out).
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13.2.2. Helicity Is Conserved

Let us go back to the induction equation (11.23) (in which we retain resistivity to keep
track of non-ideal effects, i.e., of the breaking of flux conservation):

%—?:Vx(uxB—anB). (13.20)
“Uncurling” this equation, we get
aa—?:uxB—anB—&—Vx. (13.21)
Using (13.20) and (13.21), we have
%A-B:B-(M—anB+Vx)+A-[V>< (u x B—nV x B)]

=-nB-(VxB)+V-(By)
-~V - [Ax(uxB—-nV x B)|+ (uxB —nV x B)-(V x A)
=B
=V [Bx—uA-B+BA-u+nAx(VxB)]—-2nB-(V x B). (13.22)

Integrating this and using Gauss’s theorem, we get
0
—/d3rA~B: dS-[Bx—uA-B+BA -u+nA x (V x B)]
ot Jy ov
- zn/ d®*r B - (V x B). (13.23)
1%

The surface integral vanishes provided both w and B are parallel to the boundary (no
fields stick out and no flows cross). The resistive term in the surface integral can also
be ignored either by arranging V appropriately or simply by taking it large enough so
B — 0 on 9V, or, indeed, by taking n — +0. Thus,

H
% = -2 /d3rB (VxB)]|, (13.24)

magnetic helicity is conserved in ideal MHD.%8

Furthermore, it turns out that even in resistive MHD, helicity is “better conserved”
than energy, in the following sense. As we saw in §11.11.2, the magnetic energy evolves
according to

d B? energy exchange terms
— [dr— = &y & ~2 /d3 V x B|%. 13.25

dt e < and fluxes K r| | ( )
The first term on the right-hand side contains various fluxes and energy exchanges with
the velocity field [see (11.54)], all of which eventually decay as the system relaxes (flows
decay by viscosity). The second term represents Ohmic heating. If 7 is small but the
Ohmic heating is finite, it is finite because magnetic field develops fine-scale gradients:
V~n 12 s0

-2 /d3r |V x B|?> = const as 1 — +0. (13.26)

% The resistive term in the right-hand side of (13.24) is oc [d*r B - j, a quantity known as the
current helicity.
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FIGURE 51. Linked flux tubes.

But then the right-hand side of (13.24) is
— 277/d3rB (VxB)=00n"Y?) -0 as n— +0. (13.27)

Thus, as an initial magnetic configuration relaxes, while its energy can change quickly
(on dynamical times), its helicity changes only very slowly in the limit of small n. The
constancy of H (as n — +0) provides us with the constraint subject to which the energy
will need to be minimised.

Before we use this idea, let us discuss what the conservation of helicity means physically,
or, rather, topologically.

13.2.3. Helicity Is a Topological Invariant

Consider two linked flux tubes, T} and Ty (Fig. 51). The helicity of T} is the product
of the fluxes through 77 and T5:

le/ d3rA~B:/ dl -dS A-B
T 7 N O~~~
bdl bdS A-bB

A -bdlBb-bdS = A-dlB-dS=% A-dl =D,9,. (13.28)

1
/’I' 1 T1 Tl

= [, B-dS

= Qsthrough hole in T4
By the same token, in general, in a system of many linked tubes, the helicity of tube 7 is
H; = @;Pthrough hole in tube i = Pi Z D; N, (13.29)
J

where V;; is the number of times tube j passes through the hole in tube i. The total
helicity of the this entire assemblage of flux tubes is then

H=>) &®;Ny|. (13.30)

ij

Thus, H is the number of linkages of the flux tubes weighted by the field strength in
them. It is in this sense that helicity is a topological invariant.

Note that the cross-helicity fdg'r'u - B (§12.2.7) can similarly be interpreted as counting the
linkages between flux tubes (B) and vortex tubes (w = V x u). The current helicity [d*r B - j
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FIGURE 52. John Bryan Taylor (born 1929), one of the founding fathers of modern plasma
physics, author of the Taylor relaxation (§13.3), Taylor constraint (in dynamo theory),
Chirikov—Taylor map (in chaos theory), the ballooning theory (in tokamak MHD), and many
other clever things, including the design of the UK’s first hydrogen bomb (1957). This picture
was taken in 2012 at the Wolfgang Pauli Institute in Vienna.

[appearing in the right-hand side of (13.24)] counts the number of linkages between current
loops. The latter is not an MHD invariant though.

13.3. J. B. Taylor Relazation

Let us now work out the equilibrium to which an MHD system will relax by minimising
magnetic energy subject to constant helicity:

5/ d®r (B*-~aA-B) =0, (13.31)
Vv

where « is the Lagrange multiplier introduced to enforce the constant-helicity constraint.
Let us work out the two terms:

5/ d3r32—2/d3rB 5B—2/d3rB (V x 0A)
14
—2/d3r[ V(B xdA)+(V x B) - 84|
Vv
:—2/ dS - (B x 0A) ~|—2/d3erB - 0A, (13.32)
oV 1%
5H:5/ d3rA-B:/d3r(B-5A+A-5B): d3r[B-0A+ A-(V x §A)]
1% 1%

14

:/d3[B.5A—V-(AxéA)+(V><A)~5A]
Vv

N——
=B
:—/ dS-(A><6A)+2/ d3r B - 4A. (13.33)
v %
Now, since
déB B o€
W_Vx(uxB)_Vx<ath> (13.34)
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for small displacements, we have dA = & x B, whence

B x5A =B —-B-¢(B, (13.35)
AxJA=A -Bf—A-£B. (13.36)

Therefore, the surface terms in (13.32) and (13.33) vanish if B and £ are parallel to
the boundary 9V, i.e., if the volume V encloses both B and the plasma—there are no
displacements through the boundary.

This leaves us with

6/d?’r(BzfaA«B):?/d3r(V><BfaB)~5A:O, (13.37)
14 14

which instantly implies that B is a linear force-free field:

VxB=aB = |V’B=-d’B|. (13.38)

Thus, our system will relax to a linear force-free state determined by (13.38) and
system-specific boundary conditions. Here « = «(H) depends on the (fixed by initial
conditions) value of H via the equation

1
H(a) = /d3rA .B = a/d% B?, (13.39)

where B is the solution of (13.38) (since Vx B = aB = aV x A, we have B = aA+Vx
and the y term vanishes under volume integration).

Thus, the prescription for finding force-free equilibria is

—solve (13.38), get B = B(«), parametrically dependent on «,

—calculate H(«) according to (13.39),

—set H(a) = Hy, where Hy is the initial value of helicity, hence calculate oo = a(Hp)
and complete the solution by using this o in B = B(«).

Note that it is possible for this procedure to return multiple solutions. In that case, the
solution with the smallest energy must be the right one (if a system relaxed to a local
minimum, one can always imagine it being knocked out of it by some perturbation and
falling to a lower energy).

Exercise 13.1. Force-free fields in 2D. Show that for MHD confined to the 2D plane (z,y),
the quantity [ d?r A2 is conserved. Work out the 2D version of J. B. Taylor relaxation and show
that the resulting equilibrium field is a linear force-free field.

13.4. Relaxed Force-Free State of a Cylindrical Pinch

Let us illustrate how the procedure derived in §13.3 works by considering again the
case of cylindrical and axial symmetry [see (13.5)]. The z component of (13.38) gives us
the following equation for B, (r):

1
B! + - B, +a’B, = 0. (13.40)

This is a Bessel equation, whose solution, subject to B,(0) = By and B,(c0) =0, is

| B(r) = BoJo(ar) | (13.41)




Ozford MMathPhys Lectures: Plasma Kinetics and MHD 139
A

B

~ g"r
X mo

FIGURE 53. Relaxed cylindrical pinch.

We can now calculate the azimuthal field as follows

aBy=(V x B)g=-B, = |By(r)=BoJi(ar)|. (13.42)

This gives us an interesting twisted field (Fig. 53), able to maintain itself in equilibrium
without help from pressure gradients.

Finally, we calculate its helicity according to (13.39): assuming that the length of the
cylinder is L, its radius R and so its volume V = mR2L, we have

1. 2rLB} ("
H=— /d‘ST‘ B? = U/ drr [J§ (ar) + Ji(ar)]
« (0% 0

BV

[Jg(aR) +2J%(aR) + J3(aR) — % Ji(aR)Js(aR)| . (13.43)

If we solve this for & = a(H), our solution is complete.

Exercise 13.2. Work out what happens in the general case of 3/96 # 0 and 9/9z # 0 and
whether the simple symmetric solution obtained above is the correct relaxed, minimum-energy
state (not always, it turns out). This is not a trivial exercise. The solution is in Taylor & Newton
(2015, §9), where you will also find much more on the subject of J. B. Taylor relaxation, relaxed
states and much besides—all from the original source.

There are other useful variational principles—other in the sense that the constraints that are
imposed are different from helicity conservation. The need for them arises when one considers
magnetic equilibria in domains that do not completely enclose the field lines, i.e., when dS-B # 0
at the boundary. One example of such a variational principle, also yielding a force-free field
(although not necessarily a linear one), is given in Ql(e). A specific example of such a field
arises in Q8(f).

13.5. Parker’s Problem and Topological MHD

Coming soon...On topology in MHD, a very mathematically minded student might enjoy
the book by Arnold & Khesin (1999).
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14. MHD Stability and Instabilities

We now wish to take a more general view of the MHD stability problem: given some
static®® equilibrium (some pg, po, Bo and uy = 0), will this equilibrium be stable to
small perturbations of it, i.e., will these perturbations grow or decay?

There are two ways to answer this question:

1) Carry out the normal-mode analysis, i.e., linearise the MHD equations around the
given equilibrium, just as we did when we studied MHD waves in §12.1, and see if any
of the frequencies (solutions of the dispersion relation) turn out to be complex, with
positive imaginary parts (growth rates). This approach has the advantage of being direct
and also of yielding specific information about rates of growth or decay, the character of
the growing and decaying modes, etc. However, for spatially complicated equilibria, this
is often quite difficult to do and one might be willing to settle for less: just being able
to prove that some configuration is stable or that certain types of perturbations might
grow. Hence the the second approach:

2) Check whether, for a given equilibrium, all possible perturbations will lead to the
energy of the system increasing. If so, then the equilibrium is stable—this is called the
energy principle and we shall prove it shortly. If, on the other hand, certain perturbations
lead to the energy decreasing, that equilibrium is unstable. The advantage of this second
approach is that we do not need to solve the (linearised) MHD equations in order to
pronounce on stability, just to examine the properties of the perturbed energy functional.

It should be already quite clear how to do the normal-mode analysis, at least concep-
tually, so I shall focus on the second approach.

14.1. Energy Principle
Recall what the total energy in MHD is (§11.11)

2 2
&= /d3 <Z+§W+fl) /d3 p2 + W (14.1)

As we saw in §12.1, all perturbations of an MHD system away from equilibrium can be
expressed in terms of small displacements £&—we will work this out shortly for a general
equilibrium, but for now, let us accept that this will be true.”® As u = 9&/0t by definition

of &, we have
1
_ 3,
5—/d 7'2

where we have kept terms up to second order in £ and so Wy is the equilibrium part of
W (i.e., its value for € = 0), §W1[€] is linear in &, §W5[€, €] is bilinear (quadratic), etc.
Energy must be conserved to all orders, so

2
+ Wy + W1 [€] + SWLE, €]+ ..., (14.2)

d .
ch = /d‘5r po % %Mwl Bﬂ +OWs {85,5} +0Wa [67 E} =0 (14.3)
= F[¢]

89 A treatment of the more general case of a dynamic equilibrium, wo # 0, can be found in the
excellent textbook by Davidson (2016).

°In fact, also the fully nonlinear dynamics can be completely expressed in terms of displacements
if the MHD equations are written in Lagrangian coordinates (see §11.13).
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This must be true at all times, including at ¢t = 0, when € and 9&/0t can be chosen inde-
pendently (MHD equations are second-order in time if written in terms of displacements).
Therefore, for arbitrary functions € and 7,

/d3r n - F[&] + 6Wi[n] + Waln, &) + W€, n] +--- = 0. (14.4)

In the first order, this tells us that
SWiln] = 0, (14.5)

which is good to know because it means that dW; disappears from (14.2) (there are no
first-order energy perturbations). In the second order, we get

[drn- Fleg) = ~oWaln.€) - W2l (14.6)

Let n = €. Then (14.6) implies

SWale.€) = -5 [dre-Flg)|. (14.7)

This is the part of the perturbed energy in (14.2) that can be both positive and negative.
The Energy Principle is

|5W2 [€,€] >0 for any & <  equilibrium is stable (14.8)

(Bernstein et al. 1958). Before we are in a position to prove this, we must do some
preparatory work.

14.1.1. Properties of the Force Operator F[€]

Since the right-hand side of (14.6) is symmetric with respect to swapping & < 7, so
must be the left-hand side:

/d3rn -F[¢] = /d%g - Fln]. (14.9)
Therefore, operator F[€] is self-adjoint. Since, by definition,
0%¢
Fl€] = pg— 14.1
6] = pos (14.10)

the eigenmodes of this operator satisfy
E(Lr) =€ (r)e ™ = FIE,] = —powé,. (14.11)
As always for self-adjoint operators, we can prove a number of useful statements.

1) The eigenvalues {w2} are real.

Proof. If (14.11) holds, so must

F[E,] = —po(wp)"Er, (14.12)

provided F has no complex coefficients (we shall confirm this explicitly in §14.2.1). Taking
the full scalar products (including integarting over space) of (14.11) with £ and of (14.12)



142 A. A. Schekochihin
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(a) Instability. (b) “Overstability” (does not happen in MHD).
FI1GURE 54. MHD instabilities.

\'2

with &, and subtracting one from the other, we get

~ w2~ @] [Prmle = [dreFle) - [dre, Flg) =0
| S ——

>0

= |wi=(wH*|, qed (14.13)

This result implies that, if any MHD equilibrium is unstable, at least one of the eigenvalues
must be w2 < 0 and, since it is guaranteed to be real, any MHD instability will give rise
to purely growing modes (Fig. 54a), rather than growing oscillations (also known as
“overstabilities”; see Fig. 54b).

2) The eigenmodes {€,} are orthogonal.

Proof. Taking the full scalar products of (14.11) with &,, (assuming m # n and
non-degeneracy of wfmn), and of the analogous equation

with &, and subtracting them, we get™!

(W —wd) / Er pok, - €, = / &re,,  FE,] - / Ere, - FlE,] =0
£0

q.e.d.

= / &P pots, €y = Bum / P pole,

(14.15)

14.1.2. Proof of the Energy Principle (14.8)

Let us assume completeness of the set of eigenmodes {€,,} (not, in fact, an indispensable
assumption, but we shall not worry about this nuance here; see Kulsrud 2005, §7.2). Then
any displacement at any given time ¢ can be decomposed as

&(t,r) =D an(t)€, (7). (14.16)

"'Note that in view of (14.13), we can take {£,} to be real.
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The energy perturbation (14.7) is

Walg,€) = 5 [dr&-Flg =5 Y anan [d're, - Ple,)

_1 2 3 1 2.2 [ 13 2
=3 Zanamwm /d rpok, - &, = 3 Zanwn d°r pol€,,|°. (14.17)
nm N / n

use (14.15)
By the same token,
_ 1 [ 2 _ 1 2 [ 43 2
Kled =y [drplel =55 [dr el (14.18)
Then, if we arrange wi < w3 < ..., the smallest eigenvalue is
. OWs[E, €]
2 )
w] = min ———. 14.19
P e Klg ¢ (14:19)

Therefore,

e condition (14.8) is sufficient for stability because, if §W5[€, €] > 0 for all possible &,
then the smallest eigenvalue w? > 0, and so all eigenvalues are positive, w2 > w? > 0;

e condition (14.8) is necessary for stability because, if the equilibrium is stable, then
all eigenvalues are positive, w? > 0, whence §W3[€, €] > 0 in view of (14.17), q.e.d.

14.2. Explicit Calculation of §Ws

Now that we know that we need the sign of W5 to ascertain stability (or otherwise),
it is worth working out W5 as an explicit function of €. It is a second-order quantity, but
(14.7) tells us that all we need to calculate is F'[£] to first order in &, i.e., we just need
to linearise the MHD equations around an arbitrary static equilibrium. The procedure is
the same as in §12.1, but without assuming pg, pg and By to be spatially homogeneous.

14.2.1. Linearised MHD Equations

Thus, generalising somewhat the procedure adopted in (12.3-12.5), we have

oo ime s B ()

ot ot T
= |5p =—V - (pof) | ; (14.20)
9 _ Pp _ 0 _ 9¢
(at"i-u'v)p——VpV-u = ot - ot Vpo —vpoV 9t
= [op=—€ Vpo—p0V €], (14.21)
OB 90B o
E—Vx(uxB) = at_vx<8tXBO)
= [B=Vx(£xB)|. (14.22)

Note that again &, dp and éB are all expressed as linear operators on &—and so 6W =
(5fd3r [B2/87r +p/(y— 1)] must also be some operator involving & and its gradients
but not 0&/0t (as we assumed in §14.1).

Finally, we deal with the momentum equation (to which we add gravity as this will
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give some interesting instabilities):

ou B (VxB)xB
P (815 +u- Vu) =-Vp+ P + pg. (14.23)
This gives us
0%¢ (V x Bg) xéB (V xB) x By
F[¢] = POGE = —Vip+ i + i +dpg
o X 0B V x 0B) x B
— V(£ Vpo+1p0V - €) — gV - (pot) + 22 — ( 473 0 (14.24)

where j, = ¢(V x By)/4m, we have used (14.20) and (14.21) for dp and dp, respectively,
and 6B is given by (14.22).

14.2.2. Energy Perturbation
Now we can use (14.24) in (14.7) to calculate explicitly

Wo= [ ] € V€ Tmtam¥ 6456V ()

= (£ Vo) V-E+7po(V-€)?
after integration by parts

(Jo x0B) - €& (V x éB) x By

— c — . -E . (14.25)
_do-(€xdB)  _ (VX4B)-(6x By)
47
‘ by parts
(B x V) - (€ x By)
o 47
_ B[V x (£ x By)]
o 4

2
= |643‘ , using (14.22)
™

Thus, we have arrived at a standard textbook (e.g., Kulsrud 2005) expression for
the energy perturbation (this expression is non-unique because one can do various
integrations by parts):

Wy = %/d?’r {(5 Vo) V- €&+ 700(V - €)%+ (g-€) V - (po€)

| Jo-(€xB) | |iBP
c 47

, (14.26)

where 6B = V x (€ x By). Note that two of the terms inside the integral (the second
and the fifth) are positive-definite and so always stabilising. The terms that are not sign-
definite and so potentially destabilising involve equilibrium gradients of pressure, density
and magnetic field (currents). It is perhaps not a surprise to learn that Nature, with
its fundamental yearning for thermal equilibrium, might dislike gradients—while it is of
course not a rule that all such inhomogeneities render the system unstable, we will see
that they often do, usually when gradients exceed certain critical thresholds.

All we need to do now is calculate §Ws5 according to (14.26) for any equilibrium that
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interests us and see if it can be negative for any class of perturbations (or show that it
is positive for all perturbations).

14.3. Interchange Instabilities

As the first and simplest example of how one does stability calculations using the
Energy Principle, we will (perhaps disappointingly) consider a purely hydrodynamic
situation: the stability of a simple hydrostatic equilibrium describing a generic stratified
atmosphere:

e d
po = po(z) and po=po(z) satistying % = —pog (14.27)

(gravity acts downward, against the z direction, g = —g2).

14.3.1. Formal Derivation of the Schwarzschild Criterion
With Bg = 0 and the hydrostatic equilibrium (14.27), (14.26) becomes

Wa =5 [&r [0V €+ m0(T € — gelphés + ¥ )]

= % /d?’?“ 2906V - €+ 7po(V - €) — pog€l] (14.28)

where we have used ppg = —p(,. We see that 6W, depends on £, and V - €. Let us treat
them as independent variables and minimise 6Ws with respect to them (i.e., seek the
most unstable possible situation):

X /
B [ integrand } P+ 2 (V- E) =0 = V£ 7%52. (14.29)

A(V -€) | of (14.28)
Substituting this back into (14.28), we get
1 PG 1 pog (1 P
6W=/d3r<—0—’)2:/d3r e A K 14.30
2= e P09 &=5 ol Sl 13 (14.30)
—_——
_d. po
=% In a
By the Energy Principle, the system is stable iff
dl
SWo>0 & ;1;0 >0/, (14.31)

where sy = po/p] is the entropy function. The inequality (14.31) is the Schwarzschild
criterion for convective stability.”® If this criterion is broken, there will be an instability,
called the interchange instability.

This calculation illustrates both the power and the weakness of the method:

—on the one hand, we have obtained a stability criterion quite quickly and without
having to solve the underlying equations,

—on the other hand, while we have established the condition for instability, we have
as yet absolutely no idea what is going on physically.

"2We studied perturbations of a stably stratified atmosphere in §12.2.8 and Q5, where we saw
that these perturbations indeed did not grow provided the entropy scale length 1/H, = dln so/dz
was positive.
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FIGURE 55. Interchange instability.

14.3.2. Physical Picture

We can remedy the latter problem by examining what type of displacements give rise
to W3 < 0 when the Schwarzschild criterion is broken. Recalling (14.20) and (14.21) and
specialising to the displacements given by (14.29) (as they are the ones that minimise
0W3), we get

0 -V 4
ZT;;?:_f popo_,yv,gz_%gfz_,yv.g:o, (14.32)
5 1 ’ 1 ! 4 1 dl
L):_fv.(pog):_@ L —V.-E== <_7po+po> == % ¢, (14.33)
Po Po Po v Po  Po NI
<0
(unstable)

Thus, the offending perturbations maintain themselves in pressure balance (i.e., they
are not sound waves) and locally increase or decrease density for blobs of fluid that fall
(&, < 0) or rise (£, > 0), respectively.

This gives us some handle on the situation: if we imagine a blob of fluid slowly rising
(slowly, so dp = 0) from the denser nether regions of the atmosphere to the less dense
upper ones, then we can ask whether staying in pressure balance with its surroundings
will require the blob to expand (dp < 0) or contract (dp > 0). If it is the latter, it will fall
back down, pulled by gravity; if the former, then it will keep rising (buoyantly) and the
system will be unstable. The direction of the entropy gradient determines which of these
two scenarios is realised.

14.3.3. Intuitive Rederivation of the Schwarzschild Criterion
We can use this physical intuition to derive the Schwarzschild criterion directly.
Consider two blobs, at two different vertical locations, lower (1) and upper (2), where the
equilibrium densities and pressures are pg1, po1 and posz, po2. Now interchange these two
blobs (Fig. 55). Inside the blobs, the new densities and pressures are p1, p; and ps, po.
Requiring the blobs to stay in pressure balance with their local surroundings gives

P1 = Po2, P2 = Poi- (14.34)

Requiring the blobs to rise or fall adiabatically, i.e., to satisfy p/p” = const, and then
using pressure balance (14.34) gives

1/~
_p_fmo A (Em)T (14.3)
Po1  P1 1 Po1 Po1
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Requiring that the buoyancy of the rising blob overcome gravity, i.e., that the weight
of the displaced fluid be larger than the weight of the blob,

pPo2g > P19, (14.36)
gives the condition for instability:
P1 Po1 [ Po2 1 Po2 _ Po1i
po2  Po2 \Poi Po2  Po1

This is exactly the same as the Schwarzschild condition (14.31) for the interchange
instability (and this is why the instability is called that).

Note that, while this is of course a much simpler and more intuitive agrument than
the application of the Energy Principle, it only gives us a particular example of the
kind of perturbation that would be unstable under particular conditions, not any general
criterion of what equilibria might be guaranteed to be stable.

In Q9, we will explore how the above considerations can be generalised to an equilibrium that
also features a non-zero magnetic field.

14.4. Instabilities of a Pinch

As our second (also classic) example, we consider the stability of a z-pinch equilibrium
(§13.1.1, Fig. 49):

Since we are going to have to work in cylindrical coordinates, we must first write all
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the terms in (14.26) in these coordinates and with the equilibrium (14.38):

com ot )

2
= péf + por (8& ag,z) (14.39)
d d&y O,
1wo(V - €)* = vpo (71“87' ré + %% + ai ) : (14.40)

0B =V x (6 X BO) =7 (1 0 grBO) +é (_85,230 - (rfré-rBO) +2 (i(ffengO) ’

00 0z
(14.41)
. . . /
Jo (£ B) _ o (¢ 5m, —gpam,) =gl |6 (L4 L g B0 | 10 )
C C 82 67" BO T
—
Po
=5
o0&, 0§, PoBo 2
s () 4l i
B> _ B3 | [0 9¢.\? B} (9¢.  0¢& . By’
Ar Awr? 00 + 00 + 47 \ 0z + or +§T ' (1443)

7373 ot 96\’
- (8,2 + or +
QBOBO é (652 8&) B ,»

or £T

The terms that are crossed out have been dropped because they combine into a full
derivative with respect to € and so, upon substitution into (14.26), vanish under integra-
tion. Assembling all this together, we have

_ 1 3 / p67"Bé TB{)Q €2 / 3036 9. &,
5W2—2/d7“{<p0+ By +47r 2Pt 47 & 3z+57"

—
., B _ B
=2po+t = " 4ar
B3 [roe\?  (oe\?]  B: (oc. . 95\’
. £)2 0 r z =0 z -
+ ypo(V 5)4‘47”,2 (59) +<39) +47r(6z+8r)

2 2

:;/dsr{zfé B (% %)

B |[0¢,\*  [0e?
(%) ()]} 40

47r?
where, in simplifying the first two terms in the integrand, we used the equilibrium
equation (14.38):

+ vpo(V - €)* +

B2 By B} rB? 'rBy  ByBj ''r B} B2
/ Do 059 0 PoT D 059 PoT By / 0

= _ — = — +py + —. (14.45
Po = Cdmr 4w 4 By 4 By Po 4dmr ( )
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FIGURE 56. Sausage instability.

Finally, after a little further tiding up,

2 2 2 2
3 /é;r B 0 Er agz 12 1859 8€z
oWs = /d {20r+ <6r7°+0z +Po rarTng 89+8

(=) (%)} a0

14.4.1. Sausage Instability

Let us first consider axisymmetric perturbations: 9/90 = 0. Then §W5 depends on two
variables only:

B§
472

_0& | 08
& and n= B + 5 (14.47)
Indeed, unpacking all the r derivatives in (14.46), we get
1 2 B2 A\’ A\’
oWy = - /d3r 2p6§—r +2(n- & +Po | N+ & . (14.48)
2 r a7 r r

We shall treat &, and n as independent variables and minimise dW, with respect to n:

0 | integrand B? fr & 1-— fyﬁ/2 &
=2— 2 — ] =0

37,[ (1448)] i\ ) TEpe T RO T

(14.

where, as usual, 3 = 87pg/B3. Putting this back into (14.48), we get

[ Ty B\ v 2 &
5W2_/d T B <1+75/2> T3 (1+’Yﬁ/2> 1

_ (s dInpo 2y &

—/d rp0<r o +1+’75/2>T2. (14.50)

There will be an instability (62 < 0) if (but not only if, because we are considering the
restricted set of axisymmetric displacements)

19)

dInpg 2y
>
dr 14+~8/2

(14.51)

i.e., when the pressure gradient is too steep, the equilibrium is unstable.
What sort of instability is this? Recall that the perturbations that we have identified
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as making 0Wy < 0 are axisymmetric, have some radial and axial displacements and are
compressible: from (14.49),

& 2 &
Vié=n+>=—-"—. 14.52
&= r 1+9B8/2r ( )
They are illustrated in Fig. 56. The mechanism of this aptly named sausage instability
is clear: squeezing the flux surfaces inwards increases the curvature of the azimuthal
field lines, this exerts stronger curvature force, leading to further squeezing; conversely,
expanding outwards weakens curvature and the plasma can expand further.

Exercise 14.1. Convince yourself that the displacements that have been identified cause
magnetic perturbations that are consistent with the cartoon in Fig. 56.

14.4.2. Kink Instability

Now consider non-axisymmetric perturbations (9/06 # 0) to see what other insta-
bilities might be there. First of all, since we now have 6 variation, §W5 depends on
&p. However, in (14.46), & only appears in the third term, where it is part of V - &,
which enters quadratically and with a positive coefficient ypg. We can treat V - £ as
an independent variable, alongside &, and £,, and minimise W5 with respect to it.
Obviously, the energy perturbation is minimal when

V-€=0, (14.53)

i.e., the most dangerous non-axisymmetric perturbations are incompressible (unlike for
the case of the axisymmetric sausage mode in §14.4.1: there we could not—and did not—
have such incompressible perturbations because we did not have & at our disposal, to
be chosen in such a way as to enforce incompressibility).

To carry out further minimisation of §Ws, it is convenient to Fourier transform our
displacements in the 6 and z directions—both are directions of symmetry (i.e., the
equilibrium profiles do not vary in these directions), so this can be done with impunity:

£=) & (r)lmitha), (14.54)

Then (14.46) (with V - & = 0) becomes, by Parseval’s theorem (the operator F[£] being
self-adjoint; see §14.1.1),

‘ 2 2

1 * ;16 1®
5W2:22k27rLz/0 drr{Q +—

+ ik

‘35
?

2 m2
+ TT (|§r‘2 + |§z|2)‘| }

(14.55)

As &, and & only appear algebraically in (14.55) (no r derivatives), it is easy to

minimise 6 W5 with respect to them: setting the derivative of the integrand with respect
to either &, or & to zero, we get

) & m?2 ikr® 0 &,
- g L= T L 14.
" < arr T PR R R (14.56)
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FiGUurE 57. Kink instability.

Putting this back into (14.55) and assembling terms, we get

[e’e] ’I“p/ m2 |§ |2
Wy = sz/ drrd 2 (°+) "
’ ; 0 { P\ "8 ) 2

N B2 ) k2r? 2 N m2k2r? o &, 2
— — r—2| 5.
47 m?2 + k2r2 (m? + k2r2)2 orr
m2
Y T+ k22

151

(14.57)

The second term here is always stabilising. The most unstable modes will be ones with
k — oo, for which the stabilising term is as small as possible. The remaining term will

allow §Ws < 0 and, therefore, an instability, if

dlnpy, m?

d7‘>/3

(14.58)

Again, the equilibrium is unstable if the pressure gradient is too steep. The most unstable

modes are ones with the smallest m, viz., m = 1.

Note that another way of writing the instability condition (14.58) is

, B2 rByB} , B2 dlnBy . m?
— =4 =2 = — 1
=t T T T T T T 2

where we have used the equilibrium equation (14.38).

, (14.59)

What does this instability look like? The unstable perturbations are incompressible:

10 ;
Ve=0 = -Zope+ ¢ 4ike. =o0.
r or T
Setting m = 1 and using (14.56), we find
k2t 0 &

0
’Lf@ = - TE’I‘ + ~ _2€T and gz < gr-
or

2
T
as k — oo

(14.60)

(14.61)

The basic cartoon (Fig. 57) is as follows: the flux surfaces are bent, with a twist (to
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remain uncompressed). The bending pushes the magnetic loops closer together and thus
increases magnetic pressure in concave parts and, conversely, decreases it in the convex
ones. Plasma is pushed from the areas of higher B to those with lower B, thermal pressure
in the latter (convex) areas becomes uncompensated, the field lines open up further, etc.
This is called the kink instability.

Similar methodology can be used to show that, unlike the z pinch, the 6 pinch (§13.1.1, Fig. 50)
is always stable: see Q10.

15. Further Reading

What follows is not a literature survey, but rather just a few pointers for the keen and
the curious.

15.1. MHD Instabilities

There are very many of these, easily a whole course’s worth. They are an interesting
topic. A founding text is the old, classic, super-meticulous monograph by Chandrasekhar
(2003). In the context of toroidal (fusion) plasmas, you want to learn the so-called
ballooning theory, a tour de force of theoretical plasma physics, which, like the
relaxation theory, is associated with J. B. Taylor’s name (so his lectures, Taylor & Newton
2015, are a good starting point; the original paper on the subject is Connor et al. 1979). In
the unlikely event that you have an appetite for more energy-principle calculations in
the style of §14.4, the book by Freidberg (2014) will teach you more than you ever wanted
to know. In astrophysics, MHD instabilities have been a hot topic since the early 1990s,
not least due the realisation by Balbus & Hawley (1991) that the magnetorotational
instability (MRI) is responsible for triggering turbulence and, therefore, maintaining
momentum transport in accretion flows—so the lecture notes by Balbus (2015) are an
excellent place to start learning about this subject (this is also an opportunity to learn
how to handle equilibria that are not static,e.g., most interestingly, featuring rotating
and shear flows).”

As with everything in physics, the frontier in this subject is nonlinear phenomena.
One very attractive theoretical topic has been the theory of explosive instabilities
and erupting flux tubes by S. C. Cowley and his co-workers: the founding (quite
pedagogically written) paper was Cowley & Artun (1997), the key recent one is Cowley
et al. (2015); follow the paper trail from there for various refinements and applications
(from space to tokamaks).

15.2. Resistive MHD

Most of our discussion revolved around properties of ideal MHD equations. It is, in
fact, quite essential to study resistive effects, even when resistivity is very small, because
many ideal solutions have a natural tendency to develop ever smaller spatial gradients,
which can only be regularised by resistivity (we touched on this, e.g., in §13.2.2). The
key linear result here is the tearing mode, a resistive instability associated with the
propensity of magnetic-field lines to reconnect—change their topology in such a way as
to release some of their energy. This is covered in the lectures by Parra (2018a); other
good places to read about it are Taylor & Newton (2015) again, the original paper by
Furth et al. (1963), or standard textbooks (e.g., Sturrock 1994, §17).

3 Another excellent set of lecture notes on astrophysical fluid dynamics is Ogilvie (2016),
this one originating from Cambridge Part III.
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Here again the frontier is nonlinear: the theory of magnetic reconnection: tearing
modes, in their nonlinear stage, tend to lead to formation of current sheets (which
is, in fact, a general tendency of X-point solutions in MHD), and how reconnection
happens after that has been a subject of active research since mid-20th century. Magnetic
reconnection is believed to be a key player in a host of plasma phenomena, from solar
flares to the so-called “sawtooth crash” in tokamaks, to MHD turbulence. Kulsrud (2005,
§14) has a good introduction to the history and the basics of the subject from a live
witness and key contributor. There has been much going on in it in the last decade,
many of the advances occurring on the collisionless reconnection front requiring kinetic
theory (some key names to search for in the extensive recent literature are W. Daughton,
J. Drake, J. Egedal), but even within MHD, the discovery of the plasmoid instability
(amounting to the realisation that current sheets are tearing unstable; see Loureiro et al.
2007) has led to a new theory of resistive MHD reconnection (Uzdensky et al. 2010), a
development that I (obviously) find important.

Even more recently, magnetic reconnection became intimately intertwined with the
theory of MHD turbulence (§12.4)—you will find an account of this in my (hopefully
pedagogical) review, a draft of which is here: http://www-thphys.physics.ox.ac.uk/
research/plasma/JPP/papers17/schekochihin2a.pdf. Appendix C of this document
also contains a “reconnection primer” covering tearing modes, current sheets and related
topics in the most straightforward non-rigorous way that I could manage.

15.3. Dynamo Theory and MHD Turbulence

These are topics of active research, which one can have full access to with the education
provided by these notes, and indeed it is to an extent with these topics in mind (or, at
any rate, on my mind) that some of these notes were written. Hence §§11.10 and 12.4,
where further pointers are provided.

15.4. Hall MHD, Electron MHD, Braginskii MHD

These and other “two-fluid” approximations of plasma dynamics have to do with
with (i) what happens at scales where different species (ions and electrons) cannot
be considered to move together (Hall/Electron MHD; see, e.g., Q6) and (ii) how
momentum transport (viscosity) and energy transport (heat conduction) operate in a
magnetised plasma, i.e., a plasma where the Larmor motion of particles dominates over
their Coulomb collisions, even though the latter might be faster than the fluid motions
(Braginskii 1965 MHD). In general, this is a kinetic subject, although certain limits
can be treated by fluid approximations. An introduction to these topics is given in Parra
(2018b) and Parra (2018a) (see also Goedbloed & Poedts 2004, §3 and the excellent
monograph by Helander & Sigmar 2005).

15.5. Double-Adiabatic MHD and Onwards to Kinetics

A conceptually interesting and important paradigm is the so-called double-adiabatic
MHD (or CGL equations, after the orginal authors Chew et al. 1956; see also Kulsrud
1983). This deals with a situation in a magnetised plasma (in the sense defined in §15.4)
when pressure becomes anisotropic, with pressures perpendicular and parallel to the local
direction of the magnetic field evolving each according to its own, separate equation,
replacing the adiabatic law (11.60) and based on the conservation of the adiabatic
invariants of the Larmor-gyrating particles. The dynamics of pressure-anisotropic
plasma, based on CGL equations or, which is usually more correct physically, on the
full kinetic description (and its reduced versions, e.g., Kinetic MHD); see Parra 20180,


http://www-thphys.physics.ox.ac.uk/research/plasma/JPP/papers17/schekochihin2a.pdf
http://www-thphys.physics.ox.ac.uk/research/plasma/JPP/papers17/schekochihin2a.pdf
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also Kulsrud 1983), are another current frontier, with applications to weakly collisional
astrophysical plasmas (from interplanetary to intergalactic). A key feature that makes
this topic both interesting and difficult is that pressure anisotropies in high-g plasmas
trigger small-scale instabilities (in particular, the Alfvén wave becomes unstable—the so-
called firehose instability), which break the fluid approximation and leave us without a
good mean-field theory for the description of macroscopic motions in such environments
(for a short introduction to these issues, see Schekochihin et al. 2010, although this subject
is developing so fast that anything written 10 years ago is at least partially obsolete; you
can read Squire et al. 2017 for a taste of how hairy things become in what concerns even
such staples as Alfvén waves).
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Magnetohydrodynamics Problem Set

1. Clebsch Coordinates. As V-B = (, it is always possible to find two scalar functions
a(r) and B(r) such that

B =VaxVg. (15.1)
(a) Argue that any magnetic field line can be described by the equations
a = const, [ = counst. (15.2)

This means that (a, 8, ), where £ is the distance (arc length) along the field line, are a
good set of curvilinear coordinates, known as the Clebsch coordinates.

(b) Show that the magnetic flux through any area S in the (z,y) plane is
& = [dadﬁ, (15.3)
5

where S is the area S in new coordinates after transforming (z,y) — (a(z,y,0), 8(x,y,0)).
(c) Show that if (15.1) holds at time ¢ = 0 and « and j3 are evolved in time according to

da 0 dg
a7 At
where d/dt is the convective derivative, then (15.1) correctly describes the magnetic field
at all ¢t > 0.

0, (15.4)

(d) Argue from the above that magnetic flux is frozen into the flow and magnetic field
lines move with the flow.

(e) Show that the field that minimises the magnetic energy within some domain subject
to the constraint that the values of a and g are fixed at the boundary of this domain
(i.e., that the “footpoints” of the field lines are fixed) is a force-free field.™

A prototypical example of the kind of fields that arise from the variational principle in (e) is
the “arcade” fields describing magnetic loops sticking out of the Sun’s surface, with footpoints
anchored at the surface. One such field will be considered in Q8(f) and more can be found in
Sturrock (1994, §13).

2. Uniform Collapse. A simple model of star formation envisions a sphere of galactic
plasma with number density nga = 1 cm ™ undergoing a gravitational collapse to a
spherical star with number density ngg., = 10%% cm™2. The magnetic field in the galactic
plasma is Bga ~ 3 x 107% G. Assuming that flux is frozen, estimate the magnetic field
in a star. Find out if this is a good estimate. If not, how, in your view, could we account
for the discrepancy?

3. Flux Concentration. Consider a simple 2D model of incompressible convective
motion (Fig. 58):

. T TZ T . T2
u=U (— sin —— cos —, 0, cos — sin f) . (15.5)

(a) In the neighbourhood of the stagnation point (0,0,0), linearise the flow, assume
vertical magnetic field, B = (0,0, B(¢,z)) and derive an evolution equation for B(t, z),

" This is based on the 2017 exam question.
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-b o L

F1Gure 58. Convective cells from Q3.

including both advection by the flow and Ohmic diffusion. Suppose the field is initially
uniform, B(t = 0,2) = By = const. It should be clear to you from your equation that
magnetic field is being swept towards x = 0. What is the time scale of this sweeping?
Given the magnetic Reynolds number Rm = UL/n > 1, show that flux conservation
holds on this time scale.

(b) Find the steady-state solution of your equation. Assume B(z) = B(—z) and use
flux conservation to determine the constants of integration (in terms of By and Rm).
What is the width of the region around x = 0 where the flux is concentrated? What is
the magnitude of the field there?

(c*) Obtain the time-dependent solution of your equation for B and confirm that it
indeed converges to your steady-state solution. Find the time scale on which this happens.

Hint. The following changes of variables may prove useful: £ = vaRma /L, 7 = nUt/L,
X =¢e, 5= (e2" - 1)/2.

(d) Can you think of a quick heuristic argument based on the induction equation that
would tell you that all these answers were to be expected?

4. Zeldovich’s Antidynamo Theorem. Consider an arbitrary 2D velocity field: u =
(uz, Uy, 0). Assume incompressibility. Show that, in a finite system (i.e., in a system that
can be enclosed within some volume outside which there are no fields or flows), this
velocity field cannot be a dynamo, i.e., any initial magnetic field will always eventually
decay.

Hint. Consider separately the evolution equations for B, and for the magnetic field in
the (z,y)-plane. Show that B, decays by working out the time evolution of the volume
integral of B2. Then write B,, B, in terms of one scalar function (which must be possible
because 0B, /0x + 0B, /0y = 0) and show that it decays as well.

5. MHD Waves in a Stratified Atmosphere. The generalisation of iMHD to the case
of a stratified atmosphere is explained in §12.2.8. Convince yourself that you understand
how the SMHD equations and the SMHD ordering arise and then study them as follows.

(a) Work out all SMHD waves (both their frequencies and the corresponding eigenvec-
tors). It is convenient to choose the coordinate system in such a way that k = (k;,0, k),
where z is the vertical direction (the direction of gravity). The mean magnetic field
By = Bybg is assumed to be straight and uniform, at a general angle to z. We continue
referring to the projection of the wave number onto the magnetic-field direction as
ky =k -bo = kzbor + k.bo.. Note that in the case of By = 0, you are dealing with
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stratified hydrodynamics, not MHD—the waves that you obtain in this case are the well
known gravity waves, or “g-modes”.

(b) Explain the physical nature of the perturbations (what makes the fluid oscillate)
in the special cases (i) k, = 0 and by = 2, (ii) k, = 0 and by = &, (iii) k, = 0, (iv)
k, #0, k; #0and by = 2.

(¢) Under what conditions are the perturbations you have found unstable? What is the
physical mechanism for the instability? What role does the magnetic field play (stabilising
or destabilising) and why? Cross-check your answers with §14.3 and Q9.

(d) Find the conserved energy (a quadratic quantity whose integral over space stays
constant) for the full nonlinear SMHD equations (12.93-12.96). Give a physical interpre-
tation of the quantity that you have obtained—why should it be conserved?

Do either Q6 or Q7.

6. Electron MHD. In certain physical regimes (roughly realised, for example, in the
solar-wind and other kinds of astrophysical turbulence at scales smaller than the ion
Larmor radius; see Schekochihin et al. 2009, Boldyrev et al. 2013), plasma turbulence
can be described by an approximation in which the magnetic field is frozen into the
electron flow wu., while ions are considered motionless, u; = 0. In this approximation,
Ohm’s law becomes™

u, x B

=~ (15.6)

Here u,. can be expressed directly in terms of B because the current density in a plasma
consisting of motionless hydrogen ions (n; = n.) and moving electrons is

Jj=enc(u; —u.) = —encu,, (15.7)

but, on the other hand, j is known via Ampere’s law. Here n. is the electron number
density and e the electron charge.

(a) Using this and Faraday’s law, show that the evolution equation for the magnetic
field in this approximation is

%’f — 4,V % [(V x B)x B]|, (15.8)

where the magnetic field has been rescaled to Alfvénic velocity units, B/v/4mm;n; —
B, and d; = c¢/wp; is the ion inertial scale (“ion skin depth”), wp; = +\/4wen;/m,;.
Equation (15.8) is the equation of Electron MHD (EMHD), completely self-consistent
for B.

(b) Show that magnetic energy is conserved by (15.8). Is magnetic helicity conserved?
Does J. B. Taylor relaxation work and what kind of field will be featured in the relaxed
state? Is it obvious that this field is a good steady-state solution of (15.8)7

(c) Consider infinitesimal perturbations of a straight-field equilibrium, B = Byz + 0B,

"5Strictly speaking, the generalised Ohm’s law in this approximation also contains an
electron-pressure gradient (see, e.g., Goedbloed & Poedts 2004), but that vanishes upon
substitution of E into Faraday’s law.
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and show that they are helical waves with the dispersion relation

w= :IZICH’UAkdi . (15.9)
These are called Kinetic Alfvén Waves (KAW).

(d) Now counsider finite perturbations and argue that the appropriate ordering in which
linear and nonlinear physics can coexist while perturbations remain small is

ob|~ — ~ — < 1. 15.10
5b] ~ 5 ~ L (15.10)
Under this ordering, show that the magnetic field can be represented as

0B 1 0B

— =—2 U+4z— 15.11

Bo ~ on Z2xV, U+2z B (15.11)

and the evolution equations for ¥ and 6B/ B, are

v B B
o _ vidib-Vé— 0B _ —d;b-VViV¥

5 B BB (15.12)

where b V is given by (12.111). These are the equations of Reduced Electron MHD.

(e) Check that the conservation of magnetic energy and the KAW dispersion relation
(15.9) are recovered from (15.12). Is there any other conservation law?

7. Hydrodynamics of Rotating Fluid.”® Most of this question is not on MHD, but
deals with equations describing a somewhat analogous system: also embedded into an
external field and supporting anisotropic wave-like perturbations. It is an incompressible
fluid rotating at angular velocity §2 = {2z, where 2 is the unit vector in the direction of
the z axis. The velocity field w in such a fluid satisfies the following equation

Jou

a+u~Vu: —Vp+2u x 12, (15.13)

where pressure p is found from the incompressibility condition V - u = 0, the last term
on the right-hand side is the Coriolis force, the centrifugal force has been absorbed into
p, and viscosity has been ignored.

(a) Consider infinitesimal perturbations of a static (ug = 0), homogeneous equilibrium
of (15.13). Show that the system supports waves with the dispersion relation

ki
W= iQQ?” . (15.14)

These are called inertial waves. Here k = (k.,0,k)) (without loss of generality); the
subscripts refer to directions perpendicular and parallel to the axis of rotation.

(b) In the case kj < ki, determine the direction of propagation of the inertial
waves. Determine also the relationship between the components of the velocity vector u
associated with the wave. Comment on the polarisation of the wave.

(¢c) When rotation is strong, i.e., when {2 > ku, perturbations in a rotating system
are anisotropic with € = k| /k. < 1. Order the linear and nonlinear time scales to be
similar to each other and work out the ordering of all relevant quantities, namely, u

"6This is based on the 2018 exam question.
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(horizontal velocity), u) (vertical velocity), dp (perturbed pressure), w, §2, ky, k1 with
respect to each other and to e. Using this ordering, show that the motions of a rotating
fluid satisfy the following reduced equations

(2 o 1 _ 500w Oy oP

where the “Poisson bracket” is defined by (12.110) and @ is the stream function of the

perpendicular velocity, i.e., to the lowest order in €, uﬂ?) = 2z x V @. Note that, in order
to obtain the above equations, you will need to work out V -u; to both the lowest and

next order in e, i.e., both V| -uf) and V| - uﬁ_l).

+{®u} =20 (15.15)

(d) Show that any purely horizontal flows in a strongly rotating fluid must be exactly
two-dimensional (i.e., constant along the axis of rotation).

(e) For a strongly rotating, incompressible, highly electrically conducting fluid em-
bedded in a strong uniform magnetic field B parallel to the axis of rotation, discuss
qualitatively under what conditions you would expect anisotropic (k| < k1) Alfvénic
and slow-wave-like (pseudo-Alfvénic) perturbations to be decoupled from each other?

There are certain interesting similarities between MHD turbulence and turbulence in rotating
fluid systems described by (15.15) and, indeed, also turbulence in stratified environments that
we dealt with in §12.2.8 and Q5. If you would like to know more, see Nazarenko & Schekochihin
(2011) and follow the paper trail from there.

8. Grad—Shafranov Equation. Consider static MHD equilibria (13.1) in cylindrical
coordinates (1,0, z) and assume axisymmetry, 9/96 = 0.

(a) Using the solenoidality of the magnetic field, show that any axisymmetric such field
can be expressed in the form

B =1V0+ Vi x V0, (15.16)

where I and v are functions of r and z and V8 = 8/r (6 is the unit basis vector in the
6 direction). Show that magnetic surfaces are surfaces of ¢ = const.

(b) Using the force balance, show that VI x Vi) = 0 and Vp x Vi) = 0 and hence
argue that

I'=1(¢) and p=p(y) (15.17)
are functions of ¢ only (i.e., they are constant on magnetic surfaces).

(¢) Again from the force balance, show that (r,z) satisfies the Grad-Shafranov
equation

— +1—. 15.1
or2  ror + 022 " + (15.18)

_(a%/) 109 a%)ZMde dr

This defines the shape of an axisymmetric equilibrium, given the profiles p(¢)) and I(1)).
(d) Show that in cylindrical symmetry (9/96 = 0, 9/9z = 0), (15.18) reduces to (13.8).

(e) Assume I(t)) = const (so the azimuthal field By = I/r is similar to the magnetic
field from a central current) and p(y)) = ayp, where a is some constant. Find a solution
of (15.18) that gives rise to magnetic surfaces that resemble nested tori, but with “D-
shaped” cross section (Fig. 59; this looks a bit like the modern tokamaks). If you stipulate
that p must vanish at » = 0 and at » = R along the z = 0 axis and also at z = +L
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FIGURE 59. A simple equilibrium from Q8, superficially resembling the poloidal cross-section
of a tokamak.

along the » = 0 axis and that the maximum pressure at » < R is pg, show that the
corresponding magnetic surfaces are described by

27po 9 r2 22
=2/ —— 1——-——=. 15.19
v 1+ Rre/ar?’ ( R I2 (15.19)

Where is the (azimuthal) magnetic axis of these surfaces? What is the value of a?

(f) Seck solutions to (15.18) that are linear force-free fields. Show that in this case,
(15.18) reduces to the Bessel equation (a substitution ¢ = r f(r, z) will prove useful). Set
B,(0,0) = By. Find solutions of two kinds: (i) ones in a semi-infinite domain z > 0, with
the field vanishing exponentially at z — oo; (ii) ones periodic in z. If you also impose
the boundary condition B, = 0 at = R, how can this be achieved? Can either of these
solutions be the result of J. B. Taylor relaxation of an MHD system? If so, how would one
decide whether it is more or less likely to be the correct relaxed state than the solution
derived in §13.47

You will find the solution of the type (i) in Sturrock (1994, §13) (who also shows how to construct
many other force-free fields, useful in various physical and astrophysical contexts). Think of this
solution in the context of Ql(e). The solution of type (ii) is a particular case of the general
(8/06 # 0) equilibrium solution derived and discussed in Taylor & Newton (2015, §9). However,
the axisymmteric solution is not very useful because, as they show, depending on the values of
helicity and of R, the true relaxed state is either the cylidrically and axially symmetric solution
derived in §13.4 or one which also has variation in the 0 direction.

9. Magnetised Interchange Instability. Consider the same set up as in §14.3, but
now the stratified atmosphere is threaded by straight horizontal magnetic field (Fig. 60):

. d B?
po = po(2), po=po(z), Bo= Bo(2)Z, - (po + 87?) = —pog- (15.20)

We shall be concerned with the stability of this equilibrium.

(a) For simplicity, assume 0&/0x = 0. This rules out any perturbations of the magnetic-
field direction, b = 0, so there will be no field-line bending, no restoring curvature
forces. For this restricted set of perturbations, work out dW5 and observe that, like in
the unmagnetised case considered in §14.3, it depends only on V - £ and &,. Minimise
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FIGURE 60. Magnetised atmosphere.

0Ws with respect to V - € and show that

d Po 2 d BO

—In—=4+-—In— <0 15.21

&y B b (15.21)
is a sufficient condition for instability (the magnetised interchange instability). Would
you be justified in expecting stability if the condition (15.21) were not satisfied?

(b) Explain how this instability operates and rederive the condition for instability by
considering interchanging blobs (or, rather, flux tubes), in the spirit of §14.3.3.

If field-line bending is allowed (9§/0x # 0), another instability emerges, the Parker (1966)
instability. Do investigate.

10. Stability of the 6 Pinch. Consider the following cylindrically and axially symmet-
ric equilibrium:

L. s c s d B2
Bo=Bo()z o= io)0 =~ B8 5 (mrgl)=0 52

(a 0 pinch; see §13.1.1, Fig. 50). Consider general displacements of the form
& =& (r)emoTihe, (15.23)

Show that the 6 pinch is always stable. Specifically, you should be able to show that

gl & + Z"";LFH 2] } >0,

T + or
(15.24)

o) BQ
0

where L, is the length of the cylinder.
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Appendix A. Kolmogorov Turbulence

When I fill up this section, it will be an updated version of my lectures that, in
handwritten form, can be found here: http://www-thphys.physics.ox.ac.uk/people/
AlexanderSchekochihin/notes/SummerSchool07/. In the meanwhile, §§33-34 of Lan-
dau & Lifshitz (1987) contain almost everything you need to know, but if you want to
know more, books by Frisch (1995) and Davidson (2004) are modern classics that one
cannot go wrong by reading.

In a somewhat lateral way, the scientific biography of Robert Kraichnan by Eyink &
Frisch (2010) is an excellent read about turbulence, putting the subject (or at least its
antecedents) in a broader context of theoretical physics and containing very many relevant
references (especially early ones). These authors are not, however, quite as broad-minded
or (in my view) up to date as I would have liked on the subject of intermittency, even
in their contextual referencing. My favorite intermittency (in MHD) paper is, obviously,
Mallet & Schekochihin (2017), whence you can follow the references back in time (or look
instead at the last of the 5 lectures linked above).

A.1. Dimensional Theory of the Kolmogorov Cascade
A.2. FEzact Laws
A.3. Intermittency
A.4. Turbulent Mizing
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