The following document, taken from
P.M.Bellan, Fundamentals of plasma physics, Cambridge University Press, 2006.

derives the Landau damping of electron plasma waves. Pages 180-192, contains the
treatment of the Landau problem similarly to what has been presented during the lecture.

The treatment of Landau damping of electron plasma waves is presented on p. 192-197.
There was no time to present this during the lecture.
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5.3 The Landau problem
A plasma wave behavior of great philosophical interest and of great practical
importance can now be investigated. Before doing so. we recall three seemingly
disconnected results obtained thus far, namely:
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I. When the exchange of energy between charged particles and a simple one-dimensional
elecuostatic wave with dependence ~ exp (ihx —iwt) was considered, the particles
were categorized into two general classes, trapped and untrapped, and it was found
that untrapped particles tended to be dragged towards the wave phase velocity.
Thus. untrapped particles moving slower than the wave gain kinetic energy. whereas
untrapped particles moving faster lose kinetic energy. This has the consequence that
if there are more slow than fast particles, the particles gain net Kinetic energy overall
and this gain presumably comes at the expense of the wave. Conversely. if there are
more fast than slow particles, net energy flows from the particles to the wave.

o

. When electrostatic plasma waves in an unmagnetized, uniform. stationary plasma
were considered, it was found that wave behavior was characterized by a dispersion
relation 1 + y (o, k) + y,(w, k) =0, where x, (w. k) is the susceptibility of each species
o. As sketched in Fig. 4.1 these susceptibilities had simple limi limiting forms when
w/k < /K ,“/m(, (isothermal limit) and when w/k > /KT /m . (adiabatic limit).
but the fluid analysis failed when w/k ~ /kT,;/m, and the SUSLEpllblhllLS became
undefined.

3. When the behavior of interacting beams of particles was considered. it was found that
under certain conditions a fast-growing instability would develop.

The analysis of the Landau problem, to be presented in the remainder of this
chapter, will show that these three results are both interrelated and part of a larger
picture.

5.3.1 Attempt to solve the linearized Viasov-Poisson system of equations
using Fourier analysis

The method for manipulating fluid equations to find wave solutions was as
follows: (i) the relevant fluid equations were linearized. (ii) a perturbation ~

xp (ik - x —1wr) was assumed. (iii) the system of partial differential equations was
transformed into a system of algebraic equations. and then finally (iv) the roots
of the determinant of the system of algebraic equations provided the dispersion
relations that characterized the various wave solutions.

It seems reasonable to use this method again in order to investigate waves
from the Vlasov point of view. However. it will be seen that this approach
Jails and that. instead. a more complicated Laplace transform technique must be
used. However. once the underlying difference between the Laplace and Fourier
transform techniques has been identified. it is possible 1o go back and “patch
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5.3 The Landau problem 181

up” the Fourier technique. Although perhaps not entirely elegant, this patching
approach turns out to be a reasonable compromise in that it incorporates both
the simplicity of the Fourier method and the correct mathematics/physics of the
Laplace method.

The Fourier method will now be presented and, to highlight how this method
fails, the simplest relevant example will be considered, namely a one-dimensional,
unmagnetized plasma with a stationary Maxwellian equilibrium. The ions are
assumed to be so massive as to be immobile and the ion density is assumed
to equal the electron equilibrium density. The electrostatic electric field E =
—~dd/dx is therefore zero in equilibrium because there is charge neutrality in
equilibrium. Since ions do not move there is no need to track ion dynamics. Thus,
all perturbed quantities refer to electrons and so it is redundant to label these with
a subscript “e.” In order to have a well-defined, physically meaningful problem,
the equilibrium electron velocity distribution is assumed to be Maxwellian, i.e.,

1 272
f()(l') = nowc-' “’. (524)
i i

where vy = /2xT/m.

The one-dimensional, unmagnetized Vlasov equation is
af , 3f _qdbaf
' dx moxav
and linearization of this equation gives

afl dv af q 0, afu

5.26
0! dx m ox ( )

Because the Vlasov equation describes evolution in phase-space, v is an independent
variable just like x and r. Assuming a normal mode dependence ~ exp (ikx —iwr),
Eq. (5.26) becomes

fo

—i(w— kv) f; — |A¢, -0,

which gives

(w—kv)m m
The electron density perturbation is

- k af
) _[ hid d, .[-., (@ — kv) ﬂvdl
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a relationship between 1y and &, Another relationship between 1 and & is

Poisson’s equation

L'd}? _ i (5.30)
ax €4
Replacing d/dx by ik. Eq. (5.30) becomes
5 Hy ¢
Koy = (5.31)
£y

Combining Eqs. (5.29) and (5. 31) gives the dispersion relaton

] ~ 1\ ¢; .
+ f o gy 0, (
krmey -~ (@ —kv) dv

n
o
t2

This can be written more elegantly by substituting for f, using Eq. (5.24). defining
the non-dimensional particle velocity & = v/vy. and the non-dimensional phase
velocily @ = w/kvy to give

I I e ] d
| - — — dé———e & =0 5.33
2k2Ag, - [—x ; (é—oz)ﬁéL ( ;
or
I+ x =0, (5.34)
where the electron susceptibility is
1 1 B 1 d g
= —3 f—————et. (5.35)
X A )\,) rli2 /:'x (& —a) dt

In contrast to the earlier two-fluid wave analysis. where in effect the zeroth. first.
and second moments of the Vlasov equation were combined (continuity equation,
equation of motion. and equation of state). here only the Vlasov equation is
involved. Thus the Vlasov equation contains all the information of the moment
equations and more. The Vlasov method therefore seems a simpler and more
direct way for calculating the susceptibilities than the fluid method. except for a
serious difficulty: the integral in Eq. (5.35) is mathematically ill-defined because
the denominator vanishes when & = a (i.e.. when w = kv ). Because it is not

clear how to deal with this singularity. the & integral cannot be evaluated and the
Fourier method fails. This is essentially the same as the problem encountered in
fluid analysis when w/k became comparable to KT/ m.

5.3.2  Landau method: Laplace transforms

Landau (1946) argued that the Fourier problem presented above is ill-posed and
showed that the linearized Vlasov—Poisson problem should be treated as an initial-

value problem. rather than as a normal mode problem. The initial-value point of
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view is conceptually related to the analysis of single particle motion in sawtooth
or sine waves. Before presenting the Landau analysis of the linearized Viasov—
Poisson problem, certain important features of Laplace transforms will now be
reviewed.

The Laplace transform of a function Yi(t) is defined as

Io)= [ e rar (5.36)

and can be considered as a “half of a Fourier transform” since the time integration
Starts at 7 = O rather than ¢ = —o0, Caution is required regarding the convergence
of this integral for situations where th(z) contains exponentially growing terms.

Suppose such exponentially growing terms exist. As t — oo, the fastest growing
term, say exp (yt), will dominate all other terms contributing to (r). The integral
in Eq. (5.36) will then diverge as t — oo, unless a restriction is imposed on the real
part of p. In particular, if it is required that Re p > v, then the decaying exp (—pt)
factor will always overwhelm the growing exp (yr) factor so that the integral
in Eq. (5.36) will converge. These issues of convergence are ignored in Fourier
transforms where it is implicitly assumed that the function being transformed has
neither exponentially growing terms (which diverge at = oc) nor exponentially
decaying terms (which diverge at ¢ = —00).

Thus, the integral transform in Eq. (5.36) is defined only for Re p>v. To
emphasize this restriction, Eq. (5.36) is rewritten as

Wp)= [T wwerar, Rep>y, (537)

where vy is the fastest growing exponential term contained in (). Since p is
typically complex, Eq. (5.37) means that Jt(p) is only defined in that part of the
complex p-plane lying to the right of y as sketched in Fig. 5.3(a). Whenever ¢/(p)
is used, one must be very careful to avoid venturing outside the region in p-space
where IZi(p) is defined (this restriction will later become an important issue).

To construct an inverse transform, consider the integral

2(f) = /C dp (p)e?". (5.38)

This integral is ambiguously defined for now because the integration contour C is
unspecified. However, whatever integration contour is ultimately selected must not
venture into regions where lzl{p} is undefined. Thus, an allowed integration path
must have Re p > vy. Substitution of Eq. (5.37) into Eq. (5.38) and interchanging
the order of integration gives

g(t) = fg d:’fc dpd(r)eP"=) Re p> . (5.39)
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Fig. 5.3 Contours in complex p-plane.

A useful integration path C for the p integral will now be determined. Recall
from the theory of Fourier transforms that the Dirac delta function can be

expressed as

g(r)

1 o= it
o(r) = E-*r—r_/_x dwe'",

which is an integral along the real w axis so that @ is always real. The integration
path for Eq. (5.39) will now be chosen such that the real part of p stays constant.
say at a value B that is larger than y, while the imaginary part of p goes from
—oc to oc. This path is shown in Fig. 5.3(b), and is called the Bromwich contour.

For this choice of path. Eq. (5.39) becomes

oc B+ix N ;
= [ar [ dip,ip it
4] —ix

=1 / dr'ePu—? (1) / d.“iem'“_, )
v Vo

(5.40)
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= 2ai [ " ar e p(r)8 (1 — 1)
= 27i(1), , (5.41)

where Eq. (5.40) has been used. Thus, ¢(r) = (27i) ™' g(¢) and so the inverse of
the Laplace transform is

v = 5— j dpu(p)e”. B>. (5.42)
—ix
Before returning to physics, recall another peculiarity of Laplace transforms,
namely the transformation procedure for derivatives. The Laplace transform of
dis/dt may be simplified by mfegraimg by parts to give

[ ar Lo =[S +p [ drpDeT = p(p) ~b(0). (549

Unlike Fourier transforms, here the initial value forms part of the transform. Thus,
Laplace transforms contain information about the initial value and so should be
better suited than Fourier traﬂsforms for mvestigatmg initial value problems. The
importance of the initial value was also evident in the Chapter 3 analysis of
particle motion in sawtooth or sine wave potentials.

The requisite mathematical tools are now in hand for investigating the Vlasov—
Poisson system and its dependence on initial value. To obtain extra insights with
little additional effort, the analysis is extended to the more general situation of
a three-dimensional plasma where ions are allowed to move. Again, electrostatic
waves are considered, and it is assumed that the equilibrium plasma is stationary,
spatially uniform, neutral, and unmagnetized.

The equilibrium velocity distribution of each species is assumed to be a three-
dimensional Maxwellian distribution function

32
fro(V) = ngo (chTg) exp (—myv°/2kT,;). (5.44)

The equilibrium electric field is assumed to be zero so that the equilibrium
potential is a constant chosen to be zero. It is further assumed that at # = 0 there
exists a small perturbation of the distribution function and that this perturbation
evolves in time so that at later times

fox.V.0) = foo(V) + fo1 (X, V. 1). (5:45)
The linearized Vlasov equation for each species is therefore

f"*-l—v /e %; gf“ﬁ 0. (5.46)
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180 Streaming instabilities and the Landau problem

All perturbed guantities are assumed 1o have the spatial dependence ~ exp( 1k x):
this is equivalent to Fourier transforming in space. BEquation (5.46) becomes

4 q, ‘ (’f{ ) i
{f«fifi o+ 11\ . "f(ri — 1 (!)] 1k . .__.}__F_H = (). ()4?)

ar n ., Y

Laplace transforming in time gives

. , Y Il .
(p+ik-v)f, (vop) = fo(v.0) = ;La‘n(/?hk- (——T\i’ = 0. (5.48)
(e ¢
which may be solved for Fpr(vop) o give
a | . Gy~ . H/;;() o
v p) = ———— v.0) ¢ kKo——1. 5.49
f()'s(‘ 19) (l7+1k\) [ff)'l( ) ’”“. ,)}(1))1 dv ( )

This is similar to Eq. (5.28). except that now the Laplace variable p occurs instead
of the Fourier variable —iw and also the initial value f,;(v.0) appears. As before.
Poisson's equation can be written as

1 | 3 -
Vi, = - Zq,,nm = —— Zq,, / dvfp (X ). (5.50)
0 o &0 ’

Replacing ¥ — ik and Laplace transforming with respect to time. Poisson’s
equation becomes

Kb (p) = ;/](—)(qu(r / dof (v.p). 5.50)
Substitution of Eq. (5.49) into the right-hand side of Eq. (5.51) gives
5 I . f(rl(\’.()){r-%.(;’)!(p)ik.i{%'_(l
Chip= Y [ @ b (5.5

which is similar to Eq. (5.32) except that —iw — p and the initial value appears.
Equation (5.52) may be solved for &, (p) to give
~ B N(p)

ho(p) = ) (
di(p) D) (
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Note that the denominator is similar to Eq. (5.32). All that has to be done now is
take the inverse Laplace transform of Eq. (5.53) to obtain

B+ N
1 dip: (p)

(b|(’)=—,

e, 5.56
2mi B¢ F I)(I’) ( )

where B is chosen to be larger than the fastest growing exponential term in
N(p)/D(p).

This is an exact formal solution to the problem. However, because of the
complexity of N(p) and D(p) it is impossible to evaluate the integral in Eq. (5.56).
Nevertheless, it turns out to be feasible to evaluate the long-time asymptotic
limit of this integral and, for practical purposes, this is a sufficient answer to the
problem.

5.3.3 The relationship between poles, exponential functions, and analytic
continuation

Before evaluating Eq. (5.56), it is useful to examine the relationship between
exponentially growing/decaying functions, Laplace transforms, poles, residues,
and analytic continuation. This relationship is demonstrated by considering the
exponential function

f(r) =e*, (5.57)

where ¢ is a complex constant. If the real part of ¢ is positive, then the amplitude
of f(r) is exponentially growing, whereas if the real part of ¢ is negative, the
amplitude of f(r) is exponentially decaying. Now, calculate the Laplace transform
of f(1); itis

f(p) =f el =Py = defined only for Re p > Re g. (5.58)

0 P—q
Let us examine the Bromwich contour integral for f(p) and temporarily call
this integral F(r); evaluation of F(r) ought to yield F(1) = f(r). Thus, we define

| B+ix -
F=3 [ dpfpe”. B>Req (5.59)

If the Bromwich contour could be closed in the left-hand p-plane, the integral
could easily be evaluated using the method of residues but closure of the contour
to the left is forbidden because of the restriction that 8 > Re g. This annoyance
may be overcome by constructing a new function /( p) that:

I. equals f(p) in the region B > Re ¢.
2. is also defined in the region B < Re ¢, and
3. is analytic.
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I8N Streaming instabilities and the Landau problem

Integration of .,;‘(p) along the Bromwich contour gives the same result as does
mtegration ni'}'{‘p) along the same contour because the two functions are identical
along this contour (cf. stipulation (1) above). Thus.itis seen that

[ R ,
F(i) = — / dpfipre. (5.60)
) 25N
but now there is no restriction on which part of the p-plane may be used. So
long as the end points are kept fixed and no poles are crossed. the path of
integration of an analytic function can be arbitrarily detormed. This is because
the difference between the original path and a deformed path is a closed contour.
which integrates to zero if it does not enclose any poles. Because 1 p) — 0 at the
endpoints B8 = oc. the integration path of / (p) can be deformed into the left-hand
plane as long as j(p remains analvtic (i.e.. does not jump over any poles or
branch cuts). How can this magic function f(p ) be constructed?

The answer is simple: we define a function j p) having the identical functional

form as f(p). but without the restriction that Re p > Re ¢. Thus. the analytic

continuation of

~ i )
fip)= . defined only for Re p > Reg. (5.61)

P—dq

is simply

fip)= defined for all p. provided f(p) remains analytic.  (5.62)
P—q
The Bromwich contour can now be deformed into the left-hand plane as shown
in Fig. 5.4. Because exp (pr) — 0 for positive r and negative Re p. the integration
contour can be closed by an arc that goes to the left (¢f. Fig. 5.4) into the region
where Re p — —ac. The resulting contour encircles the pole at p = ¢ and so the
integral can be evaluated using the method of residues as follows:
o ] ) I 3 ] i gl 'q
F(i)= — ¢ ——c/dp = lm Tip— ) | el | =e. (3.63)
27;1 P=q P 27 /7'4/)
This simple example shows that while the Bromwich contour formally gives the
inverse Laplace transform of £ (p). the Bromwich contour by itselt does not allow

use of the method of residues. since the poles of interest are focated in the Teft-hand

complex p-plane where f(p) is undefined. However. analytic continuation of

f(p) allows deformation of the Bromwich contour into the formerly forbidden

area. and then the inverse transform may be casily evaluated using the method of

restdues.
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complex p-plane
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deformed contour Imp T4+iee original
Bromwich
\ contour
@
Rep
1 ~jeo
~——onlyf(p) ‘ fp)f(p)—————
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Fig. 5.4 Bromwich contour.

5.3.4  Asymptotic long-time behavior of the potential oscillation

We now return to the more daunting problem of evaluating Eq. (5.56). As in the
simple example above, the goal is to close the contour to the left but, because the
functions N(p) and D(p) are not defined for Re p < ¥, this is not immediately
possible. It is first necessary to construct analytic continuations of N(p) and D(p)
that extend the definition of these functions into regions of negative Re p. As
in the simple example, the desired analytic continuations may be constructed by
taking the same formal expressions as obtained before, but now extending the
definition to the entire p-plane with the proviso that the Junctions remain analytic
as the region of definition is pushed leftwards in the p-plane.

Consider first construction of an analytic continuation for the function N(p).
This function can be written as

| x F"|(U;l.()) 1 o0 E,,(L’u.())
N e dvy - = duv. —_—
(I’) kze(';q"/.-‘_ l'(p-f-l‘!'n) ik38(,lz,q”[1 l‘(l'i!_‘lp/k)

Here, || means in the k direction, and the parallel component of the initial value
of the perturbed distribution function has been defined as

5.64)

F,\(vy,0) =/d3vl, (v, 0). (5.65)

The integrand in Eq. (5.54) has a pole at vy =ip/k. Let us assume that k > 0 (the
Coordinate system can always be defined so that this is s0). Before we construct
an analytic continuation, Re p is restricted to be greater than ¥ so that the pole
Yy =ip/k is in the upper half of the complex vy-plane as shown in Fig. 5.5(a).
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Fig. 5.5 Complex v -plane.

When N(p) is analytically continued to the left-hand region. the definition of N(p)
is extended to allow Re p to become less than y and even negative. As shown
in Fig. 5.5(b). decreasing Re p means that the pole at vy, =ip/k in Eq. (5.54)
drops from its initial location in the upper half v -plane towards the lower half
vi-plane. A critical question now arises: how should we arrange this construction
when Re p passes through zero? If the pole 1s allowed to jump from being above
the path of v, integration (which is along the real v, axis) to being below. the
function N(p) will not be analytic because it will have a discontinuous jump of
i times the residue associated with the pole. Since it was stipulated that N(p)

must be analytic. the pole cannot be allowed to jump over the v contour of

integration. Instead. the prescription proposed by Landau will be used. which is
to deform the v, contour as Re p becomes negative so that the contour ahbvays
lies below the pole: this deformation is shown in Fig. 5.5(¢).

D(p) involves a similar integration along the real v, axis. It also has a pole that
is initially in the upper half-plane when Re p > 0. but then drops to being below

the axis as Re p is allowed to become negative. Thus. analytic continuation of

D(p) is also constructed by deforming the path of the v integration so that the
contour always lies below the pole.

Equipped with these suitably constructed analytic continuations of N(p) and
D(p) into the left-hand p-plane. evaluation of Eq. (5.56) can now be undertaken.
As shown in the simple example. it is computationally advantageous 1o deform
the Bromwich contour into the left-hand p-plane. The deformed contour evaluates
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to the same result as the original Bromwich contour (provided the deformation
does not jump over any poles) and this evaluation may be accomplished via the
method of residues. In the general case where M P)/D(p) has several poles in the
left-hand p-plane, then, as shown in Fig. 5.3(c). the contour may be deformed so
that the vertical portion is pushed to the far left, except where there is a pole p;: the
contour “snags™ around each pole p; as shown in Fig. 5.3(c). For Re p — —oo, the
numerator N(p) — 0, while the denominator D(p) — 1. Since exp(pt) — 0 for
Re p — —oc and positive 1, the left-hand vertical line does not contribute to the
integral and Eq. (5.56) simply consists of the sum of the residues of all the poles, i.e.,

: N(p)
d()=5"1 =) —rteM | (5.66)
) ;pg!,l,/[(h ) b’

Where do the poles p; come from? Upon examining Eq. (5.66), it is clear that
poles could come either from (i) M(p) having an explicit pole, i.e., N(p) contains
a term ~ 1/(p— p;), or (ii) from D(p) containing a factor ~ (p—pj) Le., p;is
a root of the equation D(p) = 0. The integrand in Eq. (5.64) has a pole in the
vy-plane; this pole is “used up” as a residue upon performing the vy integration,
and so does not contribute a pole to N(p). The only other possibility is that the
initial value F, (v, 0) somehow provides a pole, but F,,(vy,0) is a physical
quantity with a bounded integral i.e., fF,,,(v”.())dv;, is finite and so cannot
contribute a pole in N(p). It is therefore concluded that all poles in N(p)/D(p)
must come from the roots (also called zeros) of D( p).

The problem can be simplified by deciding to be content with a less than
complete solution. Instead of attempting to calculate ¢,(r) for all positive times
(i.e., all the poles p; contribute to the solution), we restrict ourselves to the
less burdensome problem of finding the long-time asymptotic behavior of ¢, (r).
Because each term in Eq. (5.66) has a factor exp(ip;1), the least damped term
(i.c., the term with pole furthest to the right in Fig. 5.3(c)) will dominate all the
other terms at large 7. Hence, in order to find the long-time asymptotic behavior,
all that is required is to find the root p; having the largest real part.

The problem is thus reduced to finding the roots of D( p). this requires perform-
ing the vy integration sketched in Fig. 5.5(c). Before doing this, it is convenient
to integrate out the perpendicular velocity dependence from D(p) so that

”f.m

| = g
[)(,’) . Z i [d}l‘ v

k= eom,, (p+ik-v)
IF .
1 q> %0 v,
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192 Streaming instabilities and the Landau problem

Thus, the relation D(p) = 0 can be written in terms of susceptibilities as
D(p) =14+x;+x, =0 (568)

since the quantities being summed in Eq. (5.67) are essentially the electron and 1on
perturbations associated with the oscillation. and D(p) is the Laplace transform
analog of the Fourier transform of Poisson’s equation. In the special case where
the equilibrium distribution function is Maxwellian. the susceptibilities can be
written in a standardized form as

il

1 1 o |
= e | (=&
X 2k2A3, w!/? f_& g(§ ip/kvrg) dE xp (=€
1 1~ (E—ip/kvgy +ip/kuy,) ) }
dé—= exp(—¢&-
kz/‘%)(r [Wl ! f‘x § (§ l]?/kl"[(, p( : )
1 1 exp (—¢&2)
= m%) [1-{»%1/,2&[_ dé——— o)

szDG [1+aZ(a)], (5.69)

where « = ip/kvy,, and the last line introduces the plasma dispersion function
Z(w) defined as

/
7

|
2@ =5 f dée’zg( j)) (5.70)

where the ¢ integratioﬁ path is under the dropped pole.

5.3.5 Evaluation of the plasma dispersion function

If the pole corresponding to the fastest growing (i.e., least damped) mode turns out
to have dropped well below the real axis (corresponding to Re p being large and
negative). the fastest growing mode would be highly damped. We argue that this
does not happen because there ought to be a correspondence between the Vlasov
and fluid models in regimes where both are valid. Since the fluid model indicated
the existence of undamped plasma waves when w/k was much larger than the
thermal velocity, the Vlasov model should predict nearly the same wave in this
regime. The fluid wave model had no damping and so any damping introduced
by the Vlasov model should be weak in order to maintain an approximate corre-
spondence between fluid and Vlasov models. The Vlasov solution corresponding
to the fluid mode can therefore have a pole only slightly below the real axis, i.e..
only slightly negative. In this case, it is only necessary to analytically continue
the definition of N(p)/D(p) slightly into the negative p-plane. Thus. the pole in
Eq. (5.70) drops only slightly below the real axis as shown in Fig. 5.6.
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Im ¢

complex £-plane

mntegration contour

Fig. 5.6 Contour for evaluating plasma dispersion function.

The £ integration contour can therefore be divided into three portions, namely
(i) from € = —oco to £ = a— 8, just to the left of the pole: (ii) a counterclockwise
semi-circle of radius 8 half-way around and under the pole (cf. Fig. 5.6); and (iii)
a straight line from a + 8 to +oc. The sum of the straight line segments (i) and
(iii) in the limit 8 — 0 is called the principle part of the integral and is denoted
by a “P" in front of the integral sign. The semi-circle portion is half a residue and
so makes a contribution that is just i times the residue (rather than the standard
27 for a complete residue). Hence, the plasma dispersion function for a pole
slightly below the real axis is

Z(a) = [P/ fe’;z(_ & )]+i1r"zcxp(—az). (5.71)
where P means principle part of the integral. Equation (5.71) prescribes how to
evaluate ill-defined integrals of the type we first noted in Eq. (5.32).

There are two important limiting situations for Z(a), namely |a| > 1 (corre-
sponding to the adiabatic fluid limit since w/k > vy, ) and |a| < | (corresponding
to the isothermal fluid limit since w/k < vy, ). Asymptotic evaluations of Z(a)
are possible in both cases and are found as follows:

. a> 1 case.
Here, it is noted that the factor exp (—&?) contributes significantly to the integral only
when £ is of order unity or smaller. In the important part of the integral where this
exponential term is finite, |a| 3> £. In this region of £ the other factor in the integrand
can be expanded as

G I SO G RO 8 R

The expansion is carried to fourth order because of numerous cancelations that elim-
inate several of the lower order terms. Substitution of Eq. (5.72) into the integral in
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o

Eq. (5.71) and noting that all odd terms in Eq. (5.72) do not contribute 10 the integral

because the rest of the integrand is even gives

Lo~ expl=¢&7) L
P & e B d Eexp (&
17”'/: {_£'~a‘) T /\ L )
NS 7 eV )
X ];.(;_) _,(_) + ... 1. (5.73)
w X
The “P" has been dropped from the right-hand side of Ey. (5.73) because there is no T
Jonger any problem with a singularity. These Gaussian-type integrals may be evaluated 0
bv taking successive derivatives with respect 10 « of the Gaussian g
N . 1 2
/ déexp(—aé™) = = —— (5.74)
J al -
and then setting a = 1. Thus.
1 - s 1 . 3 <
— /.d._%_&xxp(~j£‘)= = /dé& exp(—&7) =~ (5.75)
771 o 2 i 4
so Eq. (5.73) becomes
b~ exp(—§€7) I I 3
P [ dE—— = bt | 5.76 :
I ¢ 1, « 20 4ot ( ) I
In summary. for jae| > 1. the plasma dispersion function has the asymptotic form —
oy B 1 3 kA s
Z(@) = —— l+~—- - Rl exp(—at). (5.77)
o 2a 4ot

lo] < 1 case.
In order to evaluate the principle part integral in this regime. the variable =& —«
is introduced so that diy = d€. The integral may be evaluated as follows:
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en=§&-a

(5.78)
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where in the third line all odd terms from the second line integrated to zero due to
their symmetry. Thus, for a « 1, the plasma dispersion function has the asymptotic
Himit

Z(a) = -2a (i - %:-?i +.. ) +im'Zexp (—a?). (5.79)

5.3.6 Landau ézx;izpiug of electron plasma waves

The plasma susceptibilities giss‘én‘by E{;, (5.69) can now be evaluated. For ] > 1,
using Eq. (5.77), and introducing the “frequency” w =ip so that a = w/kvr, and
@; = w;/kvr, the susceptibility is seen to be

1 1 1 3 . 172 2
Xv‘"‘kzagg{“‘a[‘;(l*’ﬁ’*z&ﬁ“)“” e

| I .
= — {-—(w———f—i%—...)+iaﬂ'1/26xp(-a2)}‘

W,y k* kT, .o 7l PLXs A
== (143 Ly | — - kvy,). (5.80
&) ( + - + +t;€¥}7‘g kEA?ba eXp( w / I‘Ta- ( )

Thus, if the root is such that || > 1, the equation for the poles D(p) = 1+,
+X, = 0 becomes
w2

k2A%,

14+3— +) e exp (—w?/k*v2,)
kv;pe

w?, k? kT w 7!/2
pi i : 2702,2\
—_ ;}—— (1 +37~ﬂ?+)+lﬁgk2,\%}l exp(-—w /k vTi) =0. (581)

This expression is similar to the previously obtained fluid dispersion relation,
Eq. (4.32), but contains additional imaginary terms that did not exist in the fluid
dispersion. Furthermore, Eq. (5.81) is not actually a dispersion relation. Instead,
it is to be understood as the equation for the roots of D( p). These roots determine
the poles in N(p)/D(p) producing the least damped oscillations resulting from
some prescribed initial perturbation of the distribution function. Since wf,g / wfﬁ. =
m;/m,, and in general vy; <« Ur,. both the real and imaginary parts of the jon
terms are much smaller than the corresponding electron terms. On dropping the
ion terms, the expression becomes

w’, K2 kT 12 —
-2 (1435 5y ) 42 S exp(~w/kal,) =0, (5.82)
w* w* m, kvy, k273, 5

Recalling that @ = ip is complex, we write w = @, +iw; and then proceed to find
the complex w that is the root of Eq. (5.82). Although it would not be particularly
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difficult to subntitute © = @, +iw, into 4. ( (3.82) and then manipulate the coupled
real und imaginary parts of this equation o sohve for @, and ;. it is betier 1o
take this analysis as an opportunity o introduce & more general way for solving
cquations of this sort.

Equation (5.82) can be writien as

Diw, +iw;) =D (o, +iw)+iD (0, ~iw) =0, (5.83)
where D, is the part of l) that does not explicitly contain i and 1, is the part that
does explicitly contain i. Thus.

wf,t,’ K kT, w 7' v gd e
D,o=1-— (} 43 —=—"L4 ). Dj=—————exp(~w /kTy.).
: w- W=, L kv keAg, ‘
{5.84)
Since the oscillation has been assumed to be weakly damped. @; < w, and s0
Eq. (5.83) can be Taylor expanded in the small quantity w;.
dD, o _[dD,
D (w,)+iw, +i| Diw,) +iw; | — =) (5.85)
d(l) W=, d(U W=,
Since w; < w,. the real part of Eq. (5.85) is
D (w,)x=0. (5.80)
Balancing the two imaginary terms in Eq. (5.85) gives
_ D) 5.87)
©i= T, e
do
Thus. Egs. (5.86) and (5.84) give the real part of the frequency as
s k* KT, 3. .
wr =, |1+ ———-—-——)Nco!, (1+3k7A3, ). (5.88)
! ws m

while Eqgs. (5.87) and (5.84) give the imaginary part of the frequency. called the
Landau damping, as

[T W, S v
w, = — = eXp (—w KU,
Vi, P ‘
— (5.89)
,‘TT (U;’:( [ (} ,\/\w}‘ﬁ N }\‘\A"\ }
= — e exp | = (1 +3h7A7, ) F2hAY,
VB A, ! he) 1

Since the least damped oscillation goes as exp (pr) = exp(—iwi) = exp(—ilw, =
iw; 1) pl—iw,+ w1 and Eq. (3.89) gives a negative o, this iy indeed
a dumpmg, It is interesting 1o note that while Landau damping was proposed
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theoretically by Landau in 1949, it took sixteen years before Landau damping
was verified experimentally (Malmberg and Wharton 1964).

What is meant by weak damping vs. strong damping? In order to calculate w,
it was assumed that w; is small compared to ®, suggesting perhaps that w, is
unimportant. However, even though small, @; can be important, because the factor
27 affects the real and imaginary parts of the wave phase differently. Suppose for
example that the imaginary part of the frequency is 1/27 ~ 1/6 the magnitude of
the real part. This ratio is surely small enough to justify the Taylor expansion used
in Eq. (5.85) and also to justify the assumption that the pole p; corresponding to
this mode is only slightly to the left of the imaginary p axis. Let us calculate how
much the wave is attenuated in one period 7 = 27/w,. This attenuation will be
exp (—|w;|7) = exp (=27/6) ~ exp(—1) ~ 0.3. Thus, the wave amplitude decays
to one third of its original value in just one period, which is certainly important.

5.3.7 Power relationships

It is premature to calculate the power associated with wave damping, because
we do not yet know how to add up all the energy in the wave. Nevertheless, if
we are willing to assume temporarily that the wave energy is entirely in the wave
electric field (it turns out there is also energy in coherent particle motion — to
be discussed in Chapter 14), it is seen that the power being lost from the wave
electric field is

d [e0Erae\ _ d [£olEL,.| ;] oE2. .
Pyaveton ~ a(—:)—“i> ~ E [—i&exp (=2|wi|t) | = —— = wave

- -

T W, 2,,9 9 2
. Q : 3 exp (—w'/k'l’}") e()E;'mr‘ (590)
V 8 2k3A7,

2k

vave) = | Evavel® (cos(kx — @1)) = |E,pure|*/2 has been used. However, in
Section 3.8, it was shown that the energy gained by untrapped resonant particles
in a wave is

2 - —-Tmaw unul‘c‘ p i (1
,pur!g'uln - 2k2 ( m dl’()j‘ln) vy=w/k

—Tmw (un‘(ll'( )2 d ( e )Il/: 1 €X ( "N'Z )
= — /i ey
2k2 m dvy | \27kT il T Sl

= Tmw unar( . m 172 m w w )
- 2k3( pe )(chT) (KTk)nocxp( kzvzm)' (5.91)

where (E2

using w ~ . this is seen to be the same as Eq. (5.90) except for a factor of
two. We shall see later that this factor of two comes from the fact that the wave
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