Extreme Plasma Physics

Thomas Grismayer

GoLP / Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico, Lisbon, Portugal

epp.tecnico.ulisboa.pt || golp.tecnico.ulisboa.pt

What do we mean by extreme?

Coherent and incoherent phenomena / scales

Radiation Reaction

Classical, relativistic and QED

Can we create abundant pair-plasma in the lab?

Pair production and QED cascades

Strong field QED in astro environments

Relativistic reconnection, Neutron stars

What do we mean by extreme?

Coherent and incoherent phenomena / scales

Radiation Reaction

Classical, relativistic and QED

Can we create abundant pair-plasma in the lab?

Pair production and QED cascades

Strong field QED in astro environments

Relativistic reconnection, Neutron stars

Typical scales of CED and QED

	CED	QED
Energy scale	Electron rest energy ${\cal E}=$	$mc^2 = 0.5 \text{ MeV}$
Momentum scale	$p = \mathcal{E}/c = 0.5 \text{ MeV/c}$	
Length scale	Classical electron radius $r_0 = e^2/mc^2 = 2.8 \times 10^{-13} \text{cm}$ (Thomson cross section)	Compton length $\lambda_C = \hbar/p = 3.9 \times 10^{-11} \text{cm}$ (Heisenberg uncertainty principle)
Time scale	$r_0/c = 10^{-23}$ s	$\lambda_C/c = 1.3 \times 10^{-21} \text{ s}$
Field scale	Critical field CED $E_0 = \mathcal{E}/er_0 = 1.8 \times 10^{18} \mathrm{V/cm}$	Critical field QED $E_S = \mathcal{E}/e\lambda_C = 1.3 \times 10^{16} \mathrm{V/cm}$
Intensity scale	$I_0 = cE_0^2/4\pi = 8.6 \times 10^{33} \mathrm{W/cm^2}$	$I_S=cE_S^2/4\pi=4.6 imes10^{29}{ m W/cm}^2$ T. Grismayer Les Houches 2019

Incoherent QED processes

Pair production

$$\gamma \gamma \rightarrow e^+ e^-$$

 $\gamma e \rightarrow e e^+ e^-$
 $e e \rightarrow e e e^+ e^-$

Photon production $ee \rightarrow ee\gamma$ $e\gamma \rightarrow e\gamma\gamma$

Annihilation

 $e^+e^- \to \gamma\gamma$

Comptonization $e\gamma \rightarrow e\gamma$

Coherent QED processes

Non-linear Breit Wheeler, trident, non linear Compton Schwinger mechanism, vacuum polarisation Photon splitting Cross section $\sigma \sim \alpha^n \sigma_T \times f(\mathcal{E})$

Probability rate $d\mathcal{P}/dt \sim (\alpha c/\lambda_C) f(E/E_S, \mathcal{E})$

Orders of magnitude...

QED Photons interaction

Near-future facilities

- Pulse duration : 30-150 fs
- ▶ Focal width ~ µm
- Intensity ~10^{21 -} 10²⁵ W/cm²
- Extreme acceleration regime

New facilities open possibilities to explore exotic physics.

Normalised vector potential a₀

- non relativistic a₀<<1 / <<10¹⁸ W/cm²
- weakly nonlinear, relativistic $a_0 \sim I \qquad I \sim 10^{18} \text{ W/cm}^2$
- relativistic, nonlinear
 a₀ ~ 10 I ~ 10²⁰ W/cm²
- ▶ QED a₀ ~ 1000 / ~ 10²⁴W/cm²

$$a_0 = \frac{eA}{mc^2}$$
$$a_0 \approx 0.8 \times 10^{-9} \sqrt{I \left[\frac{W}{cm^2}\right]} \lambda [\mu m]$$

What do we mean by extreme?

Coherent and incoherent phenomena / scales

Radiation Reaction Classical, relativistic and QED

Can we create abundant pair-plasma in the lab? Pair production and QED cascades

Strong field QED in astro environments

Relativistic reconnection, Neutron stars

Radiation Reaction in CED

Larmor's formula: instantaneous emitted power for non relativistic particle

$$P = \frac{2}{3} \frac{e^2}{c^3} a^2$$

Thomson scattering: dipole approximation

$$E = E_0 \sin \omega t \qquad \langle P \rangle = \frac{1}{3} \frac{e^4}{mc^3} E_0^2$$

incident wave

averaged power

 $\sigma_T = \frac{\langle P \rangle}{\langle S \rangle} = \frac{8\pi}{3} r_e^2$

averaged Poynting flux

Radiation reaction: the force acting on a particle by virtue of the radiation it produces ?

$$\int F_{rad} \cdot v dt = -\frac{2}{3} \frac{e^2}{c^3} \int a^2 dt$$
$$= -\frac{2}{3} \frac{e^2}{c^3} \left([a \cdot u] - \int \dot{a} \cdot v dt \right)$$

$$F_{rad} = \frac{2}{3} \frac{e^2}{c^3} \dot{a}$$

ÉCNUCO

$$\langle S \rangle = c \frac{E_0^2}{8\pi}$$

$$\begin{aligned} \mathbf{v}_{ad} \cdot vdt &= -\frac{2}{3} \frac{e^2}{c^3} \int a^2 dt \\ &= -\frac{2}{3} \frac{e^2}{c^3} \left([a \cdot u] - \int \dot{a} \cdot vdt \right) \end{aligned}$$

Radiation Reaction in CED

Radiation reaction models

Different approaches of calculating the damping force

 $\frac{d\mathbf{p}}{dt} = \mathbf{F}_L + \mathbf{F}_{rad}$

$$\begin{array}{|c|c|} \hline \frac{d\mathbf{p}}{dt} = \mathbf{F}_{\mathbf{L}} - \frac{2}{3} \frac{e^{4} \gamma}{m^{3} c^{5}} \mathbf{p} \left(\mathbf{E}_{\perp} + \frac{\mathbf{p}}{\gamma m c} \times \mathbf{B} \right)^{2} & \text{[Bell 2008]} \\ \hline \frac{d\mathbf{p}}{dt} = \mathbf{F}_{\mathbf{L}} + \frac{2e^{3}}{3mc^{3}} \left\{ \gamma \left(\left(\frac{\partial}{\partial t} + \frac{\mathbf{p}}{\gamma m} \cdot \nabla \right) \mathbf{E} + \frac{\mathbf{p}}{\gamma m c} \times \left(\frac{\partial}{\partial t} + \frac{\mathbf{p}}{\gamma m c} \cdot \nabla \right) \mathbf{B} \right) & \text{[Landau \& Lifshitz 1951]} \\ + \frac{e}{mc} \left(\mathbf{E} \times \mathbf{B} + \frac{1}{\gamma m c} \mathbf{B} \times (\mathbf{B} \times \mathbf{p}) + \frac{1}{\gamma m c} \mathbf{E} (\mathbf{p} \cdot \mathbf{E}) \right) - \frac{e\gamma}{m^{2} c^{2}} \mathbf{p} \left(\left(\mathbf{E} + \frac{\mathbf{p}}{\gamma m c} \times \mathbf{B} \right)^{2} - \frac{1}{\gamma^{2} m^{2} c^{2}} (\mathbf{E} \cdot \mathbf{p})^{2} \right) \right\} \\ 3 & \frac{d\mathbf{p}}{dt} = \mathbf{F}_{\mathbf{L}} + \frac{2e^{3}}{3m^{2} c^{4}} \frac{\mathbf{F}_{\mathbf{L}} - \frac{\gamma}{\gamma^{4} m^{2} c^{2}} \mathbf{p} (\mathbf{p} \cdot \mathbf{F}_{\mathbf{L}})}{1 + \frac{2e^{2}}{3\gamma m^{3} c^{5}} (\mathbf{p} \cdot \mathbf{F}_{\mathbf{L}})} \times \mathbf{B} - \frac{2\gamma e^{2} \mathbf{p}}{3m^{3} c^{5}} \left(\frac{\mathbf{F}_{\mathbf{L}} - \frac{\gamma}{\gamma^{2} m^{2} c^{2}} (\mathbf{p} \cdot \mathbf{F}_{\mathbf{L}}) \right) & \text{[Sokolov 2009]} \\ 4 & \frac{d\mathbf{p}}{dt} = \mathbf{F}_{\mathbf{L}} - \frac{2}{3} \frac{e^{4} \gamma^{5}}{mc^{3}} \left(\left(\mathbf{E} + \frac{\mathbf{p}}{\gamma m c} \times \mathbf{B} \right)^{2} - \frac{1}{\gamma^{2} m^{2} c^{2}} |\mathbf{p} \cdot \mathbf{E}|^{2} \right) \frac{\mathbf{p}}{p^{2}} & \text{[Hededal 2008]} \\ 5 & \frac{d\mathbf{p}}{dt} = \mathbf{F}_{\mathbf{L}} - \frac{2}{3} \frac{e^{2}}{mc^{3}} \left\{ \gamma \frac{d\mathbf{F}_{\mathbf{L}}}{dt} - \frac{\gamma}{m^{2} c^{2}} \frac{d\mathbf{p}}{dt} \times (\mathbf{p} \times \mathbf{F}_{\mathbf{L}}) + \frac{1}{\gamma m^{4} c^{4}} \left(\mathbf{p} \cdot \frac{d\mathbf{p}}{dt} \right) \left(\mathbf{p} \times (\mathbf{p} \times \mathbf{F}_{\mathbf{L}}) \right) \right\} & \text{[Ford 1993]} \\ 6 & \frac{d\mathbf{p}}{dt} = \mathbf{F}_{\mathbf{L}} + \frac{2e^{3}}{3mc^{3}} \left\{ \frac{e}{mc} \left(\mathbf{E} \times \mathbf{B} + \frac{1}{\gamma m c} \mathbf{B} \times (\mathbf{B} \times \mathbf{p}) + \frac{1}{\gamma m c} \mathbf{E} (\mathbf{p} \cdot \mathbf{E}) \right) - \frac{e\gamma}{m^{2} c^{2}} \mathbf{p} \left(\left(\mathbf{E} + \frac{\mathbf{p}}{\gamma m c} \times \mathbf{B} \right)^{2} - \frac{1}{\gamma^{2} m^{2} c^{2}} (\mathbf{E} \cdot \mathbf{p})^{2} \right) \right\} \\ \end{array}$$

Reduced L&L is best for PIC

L&L captures physically relevant solutions of LAD equation

Without radiation reaction

$$\frac{d\mathbf{p}}{dt} = e\left(\mathbf{E} + \frac{\mathbf{p}}{\gamma mc} \times \mathbf{B}\right)$$

OSIRIS 4.0

osiris framework

- Massivelly Parallel, Fully Relativistic Particle-in-Cell (PIC) Code
- Visualization and Data Analysis
 - Infrastructure
- Developed by the osiris.consortium \Rightarrow UCLA + IST

TÉCNICO LISBOA UCLA

ricardo.fonseca@tecnico.ulisboa.pt Frank Tsung tsung@physics.ucla.edu

http://epp.tecnico.ulisboa.pt/ http://plasmasim.physics.ucla.edu/

code features

- Scalability to \sim 1.6 M cores
- SIMD hardware optimized
- Parallel I/O
- Dynamic Load Balancing
- · Classical radiation reaction
- Particle merging
- GPGPU support
 - Xeon Phi support
 - QED Module

PIC loop with classical radiation reaction

Energy loss in simple setup

Full-scale 3D classical radiation reaction

TÉCNICO LISBOA

~ 40% energy loss for a 1 GeV beam at 10^{21} W/cm²

Classical RR shrinks beam energy spectrum*

In quantum interaction we expect energy spread and divergence to grow**

* M.Vranic et al., PRL (2014), S.Yoffe et al., NJP (2015), E. Esarey NIMPR (2000), M.Tamburini NIMPR (2010) ** T. G. Blackburn et al, PRL (2014) D. G. Green et al, PRL (2014), N. Neitz et al, PRL 111, 054802 (2013)

T. Grismayer | Les Houches 2019

TÉCNICO

ſĴ

Energy loss versus intensity

Anomalous radiative trapping

A. Gonoskov et al., PRL 113, 014801 (2014)

QED radiation reaction

QED parameters

Quantum recoil

Photon emission has a probabilistic character.

Radiation reaction is discrete.

Energy spread and divergence are expected to grow*.

 * T. G. Blackburn et al, PRL (2014) D. G. Green et al, PRL (2014), N. Neitz et al, PRL 111, 054802 (2013)

Implementation of QED effects

Radiation Reaction

Different types of Radiation reaction models

Implementation in PIC codes

• Continuous damping rate: particle pusher with \mathbf{F}_{rad} $\gamma < 10$

• QED probabilistic approach: particle pusher + Monte Carlo module

- every Δt : probability of photon emission
- Select a photon in QED synchrotron spectrum
- Update particle momentum due to quantum recoil

• The QED approach can be generalized to any external EM fields under the conditions: $t_{carac}(\vec{E},\vec{B}) \gg t_{coh} \implies a_0 \gg 1$ - quasi-static fields - weak fields $\chi_e^2 \gg \operatorname{Max}(f,g) \quad (f,g) \ll 1$

$$f = F_{\mu\nu}^2 / E_{crit}^2 \qquad g = F_{\mu\nu}^* F_{\mu\nu} / E_{crit}^2 \qquad E_{crit} = m^2 c^3 / e\hbar \qquad \chi_{e,\gamma} = \frac{|F_{\mu\nu} p_{e,\gamma}^{\nu}|}{E_{crit} mc}$$

* Landau & Lifshitz (Theory of Fields)

** A.I. Nikishov & V.I. Ritus (1967), N.P. Kelpikov (1954), V.N. Baier & V.M. Katkov (1967)

Synchrotron Spectrum

Quantum effects are strongest for the case of counter-propagation

But, the interaction at 90 degrees has only a factor of two lower electron chi

$$a_0 = 0.8\sqrt{I[10^{18} \text{ W/cm}^2]}\lambda[\mu\text{m}]$$

Counter-propagation

$$\chi \approx 2 \ \gamma_0 a_0 \times 2 \times 10^{-6}$$

Co-propagation

$$\chi \approx \frac{a_0}{2\gamma_0} \times 2 \times 10^{-6}$$

Interaction at 90 deg.

$$\chi \approx \gamma_0 a_0 \times 2 \times 10^{-6}$$

Energy spread increases due to stochasticity

M.Vranic et al, NJP 18, 073035 (2016)

TÉCNICO LISBOA

ſſ

What do we mean by extreme?

Coherent and incoherent phenomena / scales

Radiation Reaction

Classical, relativistic and QED

Can we create abundant pair-plasma in the lab? Pair production and QED cascades

Strong field QED in astrophysical environments

Relativistic reconnection, Neutron stars

QED-PIC loop in OSIRIS

T. Grismayer et al., POP (2016), F. Niel et al., PRE (2018)

Standing wave configurations for QED cascades

TÉCNICO

IJİ

3D OSIRIS QED - colliding laser cascades at $\,\chi \gg 1$

TÉCNICO LISBOA

յի

Cascade's growth rate in 2 lasers setup

Cascade's growth rate in 2 lasers setup

Cascade's growth rate in 2 lasers setup

Laser absorption in QED cascades

T. Grismayer et al. *PoP* 23, 056706, (**2016**) E.N Nerush et al., *PRL* 106, 035001 (**2011**)

A simple model for laser absorption

When does the laser absorption become important?

- a) the absorption time is bigger than half of the pulse duration → fraction of the pulse can escape
- b) the absorption time is smaller than half of the pulse duration → the reflected wave can reform a standing wave

$$\eta = \frac{\mathcal{E}_a}{\mathcal{E}_p} = 1 - \frac{t_a}{\tau}$$

T. Grismayer et al. *PoP* 23, 056706, (**2016**) E.N Nerush et al., *PRL* 106, 035001 (**2011**)

A simple model for laser absorption

When does the laser absorption become important?

- a) the absorption time is bigger than half of the pulse duration → fraction of the pulse can escape
- b) the absorption time is smaller than half of the pulse duration → the reflected wave can reform a standing wave

$$\eta = \frac{\mathcal{E}_a}{\mathcal{E}_p} = 1 - \frac{t_a}{\tau}$$

T. Grismayer et al. *PoP* 23, 056706, (**2016**) *E.N Nerush et al., *PRL* 106, 035001 (**2011**)

4-laser cascades - effect of polarisation

"In plane" - vortex electric fiefficiently accelerate and radiate

What do we mean by extreme?

Coherent and incoherent phenomena / scales

Radiation Reaction

Classical, relativistic and QED

Can we create abundant pair-plasma in the lab?

Pair production and QED cascades

Strong field QED in astro environments

Relativistic reconnection, Neutron stars

Magnetic reconnection : energy conversion

K. Schoeffler et al. *APJ* 870, (**2019**)

Classical magnetic Islands reach pressure balance

T. Grismayer | Les Houches 2019

TÉCNICO LISBOA

IJİ

Radiation induced compression of magnetic field

Radiation induced compression of density

TÉCNICO LISBOA

IJİ

Gamma rays/ Pairs produced inside islands

