Numerical Methods for Astrophysical Fluid Dynamics

A. Mignone Physics Department Turin University

Outline

- I. The Equations of Magnetohydrodynamics (MHD);
- II. Basic Discretization Methods;
- III. The Linear Hyperbolic PDE;
- IV. Linear Systems of Hyperbolic PDE;
- V. The Nonlinear Scalar PDE;
- VI. Nonlinear Systems of (hyperbolic) PDE;
- VII. Riemann Solvers & MHD;
- VIII. High Order Extensions;
- IX. Multidimensional Extensions & Issues;
- X. Beyond Ideal MHD.

I. MHD EQUATIONS

Magetohydrodynamics: Assumptions

- Ideal MHD describes an electrically conducting single fluid, assuming:
 - low frequency $\omega \ll \omega_p$, $\omega \ll \omega_c$, $\omega \ll \nu_{pe}$, $\omega \ll \nu_{ep}$

- large scales
$$L \gg \frac{c}{\omega_p}$$
, $L \gg R_c$, $L \gg \lambda_{mfp}$,

- Ignores electron mass and finite Larmor radius effects;
- Assume plasma is *strongly collisional* \rightarrow L.T.E., isotropy;
- Fields and fluid fluctuate on the same time and length scales;
- Neglect charge separation, electric force and displacement current.

The MHD Equations

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0 \qquad \text{(Continuity)}$$

$$\rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \cdot \mathbf{u} \right) = -\nabla p + \frac{1}{c} \mathbf{J} \times \mathbf{B} \qquad \text{(Eq. of motion)}$$

$$\frac{\partial (\rho e)}{\partial t} + \nabla \cdot (\rho e \mathbf{u}) = -p \nabla \cdot \mathbf{u} \qquad \text{(Thermodynamics I law)}$$

$$\frac{\partial \mathbf{B}}{\partial t} + \nabla \times \mathbf{E} = 0 \qquad \text{(Faraday)}$$

$$\mathbf{J} = \frac{c}{4\pi} \nabla \times \mathbf{B} \quad \text{(Ampere)}$$
$$\mathbf{E} + \frac{\mathbf{u}}{c} \times \mathbf{B} = 0 \quad \text{(Ohm)}$$
$$\nabla \cdot \mathbf{B} = 0 \quad \text{(Divergence - free)}$$
$$\rho e = \rho e(\rho, p) \quad \text{(EoS/Closure)}$$

MHD Equations in Conservative Form

- MHD suitable for describing plasma at large scales;
- Good first approximation to much of the physics, even when some of the conditions are not met.
- Draw some intuitive conclusions concerning plasma behavior without solving the equations in detail.
- Fluid equations are <u>hyperbolic</u> conservation laws.

II. BASIC DISCRETIZATION METHODS FOR HYPERBOLIC PDE

 We consider our prototype first-order partial differential equation (PDE):

$$\frac{\partial U}{\partial t} + \frac{\partial F(U)}{\partial x} = 0$$

also known as a "Conservation Law".

- Two popular methods for performing discretization:
 - <u>Finite Differences</u> (FD);
 - <u>Finite Volumes</u> (FV);
- For some problems, the resulting discretizations look identical, but they are distinct approaches;

Finite Difference Methods

 A finite-difference method stores the solution at specific points in space and time;

• Associated with each grid point is a function value,

 $U_i^n \equiv U(x_i, t^n)$

• We replace the derivatives in our PDE with differences between neighbour points.

- From Taylor expansion of the function around (x_i,tⁿ) we obtain, e.g.
 - *Forward* derivative (in time):

$$\frac{\partial U(x,t)}{\partial t} = \frac{U_i^{n+1} - U_i^n}{\Delta t} - \frac{\Delta t}{2} \left(\frac{\partial^2 U}{\partial t^2}\right)^n + H.O.T.$$
or simply
$$\frac{\partial U(x,t)}{\partial t} \approx \frac{U_i^{n+1} - U_i^n}{\Delta t} + O(\Delta t)$$
Central derivative (in space):
$$\frac{\partial U(x,t)}{\partial x} = \frac{U_{i+1}^n - U_{i-1}^n}{2\Delta x} - \frac{\Delta x^2}{6} \left(\frac{\partial^3 U}{\partial x^3}\right)_i + H.O.T.$$
or simply
$$\frac{\partial U(x,t)}{\partial x} \approx \frac{U_{i+1}^n - U_{i-1}^n}{2\Delta x} + O(\Delta x^2)$$

• In a finite volume discretization, the unknowns are the spatial averages of the function itself:

$$\langle U \rangle_i^n = \frac{1}{\Delta x} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} U(x,t^n) \, dx$$

where $x_{i-\frac{1}{2}}$ and $x_{i+\frac{1}{2}}$ denote the location of the cell interfaces.

• The solution to the conservation law involves computing fluxes through the boundary of the control volumes

• The *conservative form* of the equations provides the link between the *differential* form of the equation,

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} = 0$$

and the *integral* form, obtained by integrating the equations over a time interval $\Delta t = t^{n+1} - t^n$ and cell size $\Delta x = x_{i+1/2} - x_{i-1/2}$:

Finite Volume Formulation

• Spatial integration yields

$$\int_{t^n}^{t^{n+1}} \left[\Delta x \frac{d}{dt} \left\langle U \right\rangle_i + \left(F_{i+\frac{1}{2}} - F_{i-\frac{1}{2}} \right) \right] dt = 0$$

with $\langle U \rangle_i = \frac{1}{\Delta x} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} U(x,t) \, dx$ being a spatial average.

Integration in time gives

$$\begin{split} \Delta x \left(\langle U \rangle_i^{n+1} - \langle U \rangle_i^n \right) + \Delta t \left(\tilde{F}_{i+\frac{1}{2}}^{n+\frac{1}{2}} - \tilde{F}_{i-\frac{1}{2}}^{n+\frac{1}{2}} \right) &= 0 \\ \text{where } \tilde{F}_{i\pm\frac{1}{2}}^{n+\frac{1}{2}} &= \frac{1}{\Delta t} \int_{t^n}^{t^{n+1}} F\left(U(x_{i\pm\frac{1}{2}}) \right) dt \quad \text{ is a temporal average.} \end{split}$$

Finite Volume Formulation

• Rearranging terms:

$$\langle U \rangle_i^{n+1} = \langle U \rangle_i^n - \frac{\Delta t}{\Delta x} \left(\tilde{F}_{i+\frac{1}{2}}^{n+\frac{1}{2}} - \tilde{F}_{i-\frac{1}{2}}^{n+\frac{1}{2}} \right)$$

Integral or Conservation form

- The conservation form is an <u>exact</u> relation, no approximation introduced;
- It provides an *integral* representation of the original differential equation.
- The integral form does not make use of partial derivatives!

Importance of Conservation Form

$$\langle U \rangle_i^{n+1} = \langle U \rangle_i^n - \frac{\Delta t}{\Delta x} \left(\tilde{F}_{i+\frac{1}{2}}^{n+\frac{1}{2}} - \tilde{F}_{i-\frac{1}{2}}^{n+\frac{1}{2}} \right)$$

- The conservation form ensure correct description of discontinuous waves in terms of speed and jumps;
- It guarantees global conservation properties (no mass / energy / momentum is created or destroyed unless a net flux exists);
- To second-order accuracy, a *finite difference* method and a *finite volume* method look essentially the same;
- Approximation introduced in the computation of the flux.

Flux computation: the Riemann Problem

 Since the solution is known only at tⁿ, some kind of approximation is required in order to evaluate the flux through the boundary:

$$\tilde{F}_{i+\frac{1}{2}}^{n+\frac{1}{2}} = \frac{1}{\Delta t} \int_{t^n}^{t^{n+1}} F\left(U(x_{i+\frac{1}{2}}, t)\right) dt$$

This achieved by solving the so-called "*Riemann Problem*", i.e., the evolution of an inital discontinuity separating two <u>constant</u> states. The Riemann problem is defined by the initial condition:

$$U(x,0) = \begin{cases} U_L & \text{for } x < x_{i+\frac{1}{2}} \\ U_R & \text{for } x > x_{i+\frac{1}{2}} \end{cases} \implies U(x_{i+\frac{1}{2}}, t > 0) =?$$

The Riemann Problem

The Riemann Problem

III. THE LINEAR ADVECTION EQUATION: CONCEPTS AND DISCRETIZATIONS

The Advection Equation: Theory

• First order partial differential equation (PDE) in (x,t):

$$rac{\partial U(x,t)}{\partial t} + a rac{\partial U(x,t)}{\partial x} = 0$$

Hyperbolic PDE: information propagates across domain at <u>finite speed</u>
 → method of characteristics

 $\frac{dx}{dt} = a$

• Characteristic curves satisfy:

 $\frac{dU}{dt} = \frac{\partial U}{\partial t} + \frac{dx}{dt}\frac{\partial U}{\partial x} = 0$

 \rightarrow The solution is constant along characteristic curves.

The Advection Equation: Theory

 for constant *a*: the characteristics are straight parallel lines and the solution to the PDE is a uniform shift of the initial profile:

$$U(x,t) = U(x - at, 0)$$

• The solution shifts to the right (for a > 0) or to the left (a < 0):

Discretization: the FTCS Scheme

- $\frac{\partial U(x,t)}{\partial t} + a \frac{\partial U(x,t)}{\partial x} = 0$ Consider our model PDE
- Forward derivative in time:
- Centered derivative in space: •

$$\frac{\partial U}{\partial t} \approx \frac{U_i^{n+1} - U_i^n}{\Delta t} + O(\Delta t)$$

$$\frac{\partial U}{\partial x} \approx \frac{U_{i+1}^n - U_{i-1}^n}{2\Delta x} + O(\Delta x^2)$$

Putting all together and solving with respect to U^{n+1} gives ۲

$$U_{i}^{n+1} = U_{i}^{n} - \frac{C}{2} \left(U_{i+1}^{n} - U_{i-1}^{n} \right)$$

 $\overline{\partial t}$

where $C = a \Delta t / \Delta x$ is the Courant-Friedrichs-Lewy (CFL) number.

- We call this method *FTCS* for <u>Forward in Time</u>, <u>Centered in Space</u>. ٠
- It is an explicit method. ۲

 At t=0, the <u>initial condition</u> is a square pulse with periodic boundary conditions:

FTCS: von Neumann Stability Analysis

- Let's perform an analysis of *FTCS* by expressing the solution as a Fourier series.
- Since the equation is linear, we only examine the behavior of a single mode. Consider a trial solution of the form:

 $U_i^n = A^n e^{Ii\theta} \,, \quad \theta = k\Delta x$

- Plugging in the difference formula: $\frac{A^{n+1}}{A^n} = 1 \frac{C}{2} \left(e^{I\theta} e^{-I\theta} \right)$ $\implies \qquad \left| \frac{A^{n+1}}{A^n} \right|^2 = 1 + C^2 \sin^2 \theta \ge 1$
- Indipendently of the CFL number, all Fourier modes increase in magnitude as time advances.
- This method is <u>unconditionally unstable!</u>

Forward in Time, Backward in Space

- Let's try a difference approach. Consider the backward formula for the spatial derivative:
 - $\frac{\partial U}{\partial x} \approx \frac{U_i^n U_{i-1}^n}{\Delta x} + O(\Delta x) \quad \Longrightarrow$
- The resulting scheme is called FTBS:

$$U_i^{n+1} = U_i^n - C\left(U_i^n - U_{i-1}^n\right)$$

 Apply von Neumann stability analysis on the resulting discretized equation:

$$\left|\frac{A^{n+1}}{A^n}\right|^2 = 1 - 2C(1-C)(1-\cos\theta)$$

• Stability demands

$$\left|\frac{A^{n+1}}{A^n}\right| \le 1 \quad \Longrightarrow \quad 2C(1-C) \ge 0$$

- for a < 0 the method is <u>unstable</u>, but
- for a > 0 the method is <u>stable</u> when $0 \le C = a \Delta t / \Delta x \le 1$.

Forward in Time, Forward in Space

• Repeating the same argument for the forward derivative

$$\frac{\partial U}{\partial x} \approx \frac{U_{i+1}^n - U_i^n}{\Delta x} + O(\Delta x) \quad \Longrightarrow \quad \left[U_i^{n+1} = U_i^n - C\left(U_{i+1}^n - U_i^n\right) \right]$$

• The resulting scheme is called FTFS:

• Apply stability analysis yields
$$\left|\frac{A^{n+1}}{A^n}\right|^2 = 1 + 2C(1-C)(1-\cos\theta)$$

- If *a* > *0* the method will always be <u>unstable</u>
- However, if a < 0 and $-1 \le C = a \Delta t / \Delta x \le 0$ then this method is <u>stable</u>;

Stable Discretizations: FTBS, FTFS

Stability: the CFL Condition

• Since the advection speed *a* is a parameter of the equation, Δx is fixed from the grid, the previous inequalities on C=a $\Delta t/\Delta x$ are stability constraints on the time step for explicit methods

- <u>At</u> cannot be arbitrarily large but, rather, less than the time taken to travel one grid cell (→ <u>CFL condition</u>).
- In the case of nonlinear equations, the speed can vary in the domain and the maximum of *a* should be considered instead.

The 1st Order Godunov Method

• Summarizing: the *stable discretization* makes use of the grid point where information is coming from:

• This is also called the first-order Godunov method;

Conservative Form

• Define the "flux" function $F_{i+\frac{1}{2}}^n = \frac{a}{2} \left(U_{i+1}^n + U_i^n \right) - \frac{|a|}{2} \left(U_{i+1}^n - U_i^n \right)$ so that Godunov method can be cast in *conservative* form

 The conservative form ensures a correct description of <u>discontinuities</u> in nonlinear systems, ensures global conservation properties and is the main building block in the development of high-order <u>finite volume</u> schemes.

The Riemann Problem

The Riemann Problem

Code Example

- *File name*: advection.c
- <u>Purpose</u>: solve the linear advection equation using the 1st-order Godunov method.
- <u>Usage</u>:

> gcc advection.c -o advection
> ./advection

• *Output*: two-column ascii data file.

<u> </u>	gwin\nome\Andrea\Presentations\Copennagen.2013\CodeS\AdVection\adVection.c - Notepad++	200
File E	dit Search View Encoding Language Settings Macro Run Plugins Window ?	>
6	▐▋▝▌▝▖▙▎▓▝▙▎₽▝▌▎▓▝▖▏▝▌▝▋▝▋▌▋▌▕▋▌▌▌▌▌▌▖▖▝▝▌▖▓▝Ÿ	
📄 adve	ction.c	
1	<pre>#include <stdio.h></stdio.h></pre>	-
2	<pre>#include <stdarg.h></stdarg.h></pre>	
3	<pre>#include <string.h></string.h></pre>	
4	<pre>#include <math.h></math.h></pre>	=
5	<pre>#include <stdlib.h></stdlib.h></pre>	
6		
7	<pre>double Initial_Condition (double x);</pre>	
8	<pre>void Integrate (double *u0, double *u1, double dtdx, int ibeg, int iend);</pre>	
9		
10	#define PI 3.14159265358979	
11	#define NGHOST 2	
12	#define NX 100	
13	#define a 1.0	
14	<pre>#define FTCS 1 /* forward in time, centered in space */</pre>	
15	<pre>#define UPWIND 2 /* choose depending on the sign of a */</pre>	
16		
17		
18		
19	#define METHOD UPWIND /* either UPWIND or FTCS */	
20	/* ***********************************	
21	/* ***********************************	
22	Int main()	
23	*	
24	* Solve the linear advection equation with a first order	
25	* mothod	
20	*	
27	* Last Modified 14 Nov 2011 by A Mignone (mignone@nb unito it)	
20	*	
25		*

IV. LINEAR SYSTEMS OF HYPERBOLIC CONSERVATION LAWS

System of Equations: Theory

• We turn our attention to the system of equations (PDE)

$$\frac{\partial \mathbf{q}}{\partial t} + A \cdot \frac{\partial \mathbf{q}}{\partial x} = 0$$

where $\mathbf{q} = \{q_1, q_2, ..., q_m\}$ is the vector of unknowns. A is a $m \times m$ constant matrix.

• For example, for m=3, one has

$$\frac{\partial q_1}{\partial t} + A_{11} \frac{\partial q_1}{\partial x} + A_{12} \frac{\partial q_2}{\partial x} + A_{13} \frac{\partial q_3}{\partial x} = 0$$
$$\frac{\partial q_2}{\partial t} + A_{21} \frac{\partial q_1}{\partial x} + A_{22} \frac{\partial q_2}{\partial x} + A_{23} \frac{\partial q_3}{\partial x} = 0$$
$$\frac{\partial q_3}{\partial t} + A_{31} \frac{\partial q_1}{\partial x} + A_{32} \frac{\partial q_2}{\partial x} + A_{33} \frac{\partial q_3}{\partial x} = 0$$

• The system is hyperbolic if A has real eigenvalues, $\lambda^1 \leq ... \leq \lambda^m$ and a complete set of linearly independent right and left eigenvectors r^k and l^k $(r^j \cdot l^k = \delta_{jk})$ such that

$$\begin{cases} A \cdot \boldsymbol{r}^{k} = \lambda^{k} \boldsymbol{r}^{k} \\ \boldsymbol{l}^{k} \cdot A = \boldsymbol{l}^{k} \lambda^{k} \end{cases} \quad \text{for} \quad k = 1, ..., m$$

• For convenience we define the matrices $\Lambda = diag(\lambda^k)$, and

$$R = \left(\mathbf{r^1} | \mathbf{r^2} | \dots | \mathbf{r^m}\right), \quad L = R^{-1} = \left(\frac{\frac{\mathbf{l^1}}{\mathbf{l^2}}}{\frac{\mathbf{l}}{\mathbf{l^m}}}\right)$$

• So that $A \cdot R = R \cdot \Lambda$, $L \cdot A = \Lambda \cdot L$, $L \cdot R = R \cdot L = I$, $L \cdot A \cdot R = \Lambda$.
System of Equations: Theory

- The linear system can be reduced to a set of decoupled linear advection equations.
- Multiply the original system of PDE's by *L* on the left:

$$L \cdot \left(\frac{\partial \boldsymbol{q}}{\partial t} + A \cdot \frac{\partial \boldsymbol{q}}{\partial x}\right) = L \cdot \frac{\partial \boldsymbol{q}}{\partial t} + L \cdot A \cdot R \cdot L \cdot \frac{\partial \boldsymbol{q}}{\partial x} = 0$$

• Define the <u>characteristic variables</u> $w=L \cdot q$ so that

$$\frac{\partial \boldsymbol{w}}{\partial t} + \Lambda \cdot \frac{\partial \boldsymbol{w}}{\partial x} = 0$$

• Since Λ is diagonal, these equations are not coupled anymore.

 In this form, the system decouples into *m* independent advection equations for the characteristic variables:

$$\frac{\partial \boldsymbol{w}}{\partial t} + \Lambda \cdot \frac{\partial \boldsymbol{w}}{\partial x} = 0 \implies \frac{\partial w^{\kappa}}{\partial t} + \lambda^{k} \cdot \frac{\partial w^{\kappa}}{\partial x} = 0$$

where $\boldsymbol{w}^{k} = \mathbf{l}^{k} \cdot \mathbf{q}$ (k=1,2,...,m) is a characteristic variable

• When m=3 one has, for instance:

$$\frac{\partial w^{1}}{\partial t} + \lambda^{1} \frac{\partial w^{1}}{\partial x} = 0$$
$$\frac{\partial w^{2}}{\partial t} + \lambda^{2} \frac{\partial w^{2}}{\partial x} = 0$$
$$\frac{\partial w^{3}}{\partial t} + \lambda^{3} \frac{\partial w^{3}}{\partial x} = 0$$

 \circ 1

System of Equations: Theory

- The *m* advection equations can be solved independently by applying the standard solution techniques developed for the scalar equation.
- In particular, one can write the *exact analytical solution* for the *k*-th characteristic field as

$$w^k(x,t) = w^k(x - \lambda^k t, 0)$$

i.e., the initial profile of w^k shifts with uniform velocity λ^k , and

$$w^{k}(x - \lambda^{k}t, 0) = \mathbf{l}^{k} \cdot \mathbf{q}(x - \lambda^{k}t, 0)$$

is the initial profile.

• The characteristics are thus constant along the curves $dx/dt = \lambda^k$

System of Equations: Exact Solution

• Once the solution in characteristic space is known, we can solve the original system via the inverse transformation

$$\mathbf{q}(x,t) = R \cdot \mathbf{w}(x,t) = \sum_{k=1}^{k=m} w^k(x,t) \mathbf{r}^k = \sum_{k=1}^{k=m} w^k(x-\lambda^k t,0) \mathbf{r}^k$$

- The characteristic variables are thus the coefficients of the right eigenvector expansion of *q*.
- The solution to the linear system reduces to a linear combination of m linear waves traveling with velocities λ^k .
- Expressing everything in terms of the original variables q,

$$\mathbf{q}(x,t) = \sum_{k=1}^{k=m} \mathbf{l}^k \cdot \mathbf{q}(x - \lambda^k t, 0) \mathbf{r}^k$$

Riemann Problem for Discontinuous Data

 If *q* is initially discontinuous, one or more characteristic variables will also have a discontinuity. Indeed, at *t* = 0,

$$w^{k}(x,0) = \boldsymbol{l}^{k} \cdot \boldsymbol{q}(x,0) = \begin{cases} w_{L}^{k} = \boldsymbol{l}^{k} \cdot \boldsymbol{q}_{L} & \text{if} \quad x < x_{i+\frac{1}{2}} \\ w_{R}^{k} = \boldsymbol{l}^{k} \cdot \boldsymbol{q}_{R} & \text{if} \quad x > x_{i+\frac{1}{2}} \end{cases}$$

In other words, the initial jump *q_R* - *q_L* is decomposed in several waves each propagating at the constant speed λ^k and corresponding to the eigenvectors of the Jacobian A:

$$\boldsymbol{q}_R - \boldsymbol{q}_L = \alpha^1 \boldsymbol{r}^1 + \alpha^2 \boldsymbol{r}^2 + \dots + \alpha^m \boldsymbol{r}^m$$

where $\alpha^k = \boldsymbol{l}^k \cdot (\boldsymbol{q}_R - \boldsymbol{q}_L)$ are the <u>wave strengths</u>

Riemann Problem for Discontinuous Data

 For the linear case, the <u>exact</u> solution for each wave at the cell interface is:

$$w^{k}\left(x_{i+\frac{1}{2}},t\right) = w^{k}\left(x_{i+\frac{1}{2}} - \lambda^{k}t,0\right) = \begin{cases} w_{L}^{k} & \text{if} \quad \lambda^{k} > 0\\ w_{R}^{k} & \text{if} \quad \lambda^{k} < 0 \end{cases}$$

• The complete solution is found by adding all wave contributions:

$$\boldsymbol{q}\left(x_{i+\frac{1}{2}},t\right) = \sum_{k:\lambda_k>0} w_L^k \boldsymbol{r}^k + \sum_{k:\lambda_k<0} w_R^k \boldsymbol{r}^k$$

and the flux is finally computed as

s
$$\tilde{\boldsymbol{F}}_{i+\frac{1}{2}} = A \cdot \boldsymbol{q}\left(x_{i+\frac{1}{2}}, t\right)$$

The Riemann Problem

Point $(x_{i+1/2},t)$ traces back to the right of the λ^1 characteristic emanating from the initial jump, but to the left of the other 2, so the solution is:

$$\boldsymbol{q}\left(x_{i+\frac{1}{2}},t\right) = w_R^1 \boldsymbol{r}^1 + w_L^2 \boldsymbol{r}^2 + w_L^3 \boldsymbol{r}^3$$

Numerical Implementation

- We suppose the solution at time level *n* is known as *qⁿ* and we wish to compute the solution *qⁿ⁺¹* at the next time level *n+1*.
- Our numerical scheme can be derived by working in the characteristic space and then transforming back:

$$\boldsymbol{q}_{i}^{n+1} = \sum_{k} w_{i}^{k,n+1} \boldsymbol{r}^{k} = \boldsymbol{q}_{i}^{n} - \frac{\Delta t}{\Delta x} \left(\boldsymbol{F}_{i+\frac{1}{2}}^{n} - \boldsymbol{F}_{i-\frac{1}{2}}^{n} \right)$$

where
$$F_{i+\frac{1}{2}}^{n} = A \cdot \frac{q_{i+1}^{n} + q_{i}^{n}}{2} - \frac{1}{2} \sum_{k} |\lambda^{k}| l^{k} \cdot (q_{i+1}^{n} - q_{i}^{n}) r^{k}$$

is the Godunov flux for a linear system of advection equations.

V. NONLINEAR SCALAR HYPERBOLIC PDE

• We turn our attention to the scalar conservation law

$$\frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} = 0$$

- Where *f(u)* is, in general, a nonlinear function of *u*.
- To gain some insights on the role played by nonlinear effects, we start by considering the inviscid Burger's equation:

$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} \left(\frac{u^2}{2}\right) = 0$$

- We can write Burger's equation also as $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial r} = 0$
- In this form, Burger's equation resembles the linear advection equation, except that the velocity is no longer constant but it is equal to the solution itself.
- The characteristic curve for this equation is

$$\frac{dx}{dt} = u(x,t) \implies \frac{du}{dt} = \frac{\partial u}{\partial t} + \frac{\partial u}{\partial x}\frac{dx}{dt} = 0$$

 → u is constant along the curve dx/dt=u(x,t) → characteristics are again straight lines: values of u associated with some fluid element do not change as that element moves.

• From
$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0$$

one can predict that, higher values of *u* will propagate faster than lower values: this leads to a *wave steepening*, since upstream values will advances faster than downstream values.

• Indeed, at t=1 the wave profile will look like:

• the wave steepens...

• If we wait more, we should get something like this:

• A multi-value functions ?! → Clearly <u>NOT</u> physical !

 The correct physical solution is to place a discontinuity there: a <u>shock wave</u>.

• Since the solution is no longer smooth, the differential form is not valid anymore and we need to consider the *integral form*.

• This is how the solution should look like:

• Such solutions to the PDE are called *weak solutions*.

- Let's try to understand what happens by looking at the characteristics.
- Consider two states initially separated by a jump at an interface:

• Here, the characteristic velocities on the left are greater than those on the right.

• The characteristic will intersect, creating a *shock wave*:

• The shock speed is such that $\lambda(u_L) > S > \lambda(u_R)$. This is called the <u>entropy condition</u>.

• The shock speed *S* can be found using the Rankine-Hugoniot jump conditions, obtained from the integral form of the equation:

$$f(u_R) - f(u_L) = S(u_R - u_L)$$

• For Burger's equation $f(u) = u^2/2$, one finds the shock speed as

$$S = \frac{u_L + u_R}{2}$$

Burger Equation: Rarefaction Waves

• Let's consider the opposite situation:

• Here, the characteristic velocities on the left are smaller than those on the right.

Burger Equation: Rarefaction Waves

• Now the characteristics will diverge:

 Putting a shock wave between the two states would be incorrect, since it would violate the entropy condition. Instead, the proper solution is a <u>rarefaction wave</u>.

Burger Equation: Rarefaction Waves

- A rarefaction wave is a nonlinear wave that smoothly connects the left and the right state. It is an expansion wave.
- The solution can only be selfsimilar and takes on the range of values between u_L and u_R.

- The head of the rarefaction moves at the speed $\lambda(u_R)$, whereas the tail moves at the speed $\lambda(u_L)$.
- The general condition for a rarefaction wave is $\lambda(u_L) < \lambda(u_R)$
- Both rarefactions and shocks are present in the solutions to the Euler equation. Both waves are nonlinear.

Burger Equation: Riemann Solver

- These results can be used to write the general solution to the Riemann problem for Burger's equation:
 - If $u_L > u_R$ the solution is a discontinuity (<u>shock wave</u>). In this case

$$u(x,t) = \begin{cases} u_L & \text{if } x - St < 0\\ u_R & \text{if } x - St > 0 \end{cases}, \qquad S = \frac{u_L + u_R}{2}$$

- If $u_L < u_R$ the solution is a <u>rarefaction wave</u>. In this case

$$u(x,t) = \begin{cases} u_L & \text{if } x/t \le u_L \\ x/t & \text{if } u_L < x/t < u_R \\ u_R & \text{if } x/t > u_R \end{cases}$$

• Solutions look like

• for a rarefaction and a shock, respectively.

Code Example

- *File name*: burger.c
- <u>Purpose</u>: solve Burger's equation using 1st-order Godunov method.
- <u>Usage</u>:
- > gcc –O burger.c –o burger
- > ./burger
- <u>Output</u>: two-column ascii data files "data.nnnn.out"

📔 С:\су	gwin\home\Andrea\Presentations\Copenhagen.2013\Codes\Burger\burger.c - Notepad++	X			
File Ed	it Search View Encoding Language Settings Macro Run Plugins Window ?	Х			
1 🕞 🖨	= ° ; °				
advection.c 🖶 burger.c					
1	#include <stdio.h></stdio.h>	*			
2	#include <stdarg.h></stdarg.h>				
3	#include <string.h></string.h>				
4	<pre>#include <math.h></math.h></pre>				
5	<pre>#include <stdlib.h></stdlib.h></pre>				
6					
7	<pre>double Initial_Condition (double x);</pre>				
8	void Integrate (double *u0, double *u1, double dtdx, int ibeg, int iend);				
9					
10	#define PI 3.14159265358979				
11	#define NGHOST 2				
12	#define NX 4000				
13	/* ************************************				
14	int main()				
15	/*				
16	*				
17	*				
18	*				
19	· ************************************				
20	{				
21	<pre>int i, nstep, out_freq;</pre>				
22	int ibeg, iend;				
23	double xbeg, xend;				
24	double x [NX + 2*NGHOST], dx;				
25	double u⊍[NX + 2*NGHOSI], u1[NX + 2*NGHOSI];				
26	double t, tstop, at, cfl, dtdx;				
2/	double umax;				
28	/* default values */				
27 / ··· uclault values ·/					
C source file length: 3495 lines: 171 Ln: 1 Col: 1 Sel: 0 UNIX ANSI INS					

VI. NONLINEAR SYSTEMS OF CONSERVATION LAW

Nonlinear Systems

- Much of what is known about the numerical solution of hyperbolic systems of nonlinear equations comes from the results obtained in the linear case or simple nonlinear scalar equations.
- The key idea is to exploit the conservative form and assume the system can be locally "frozen" at each grid interface.
- However, this still requires the solution of the Riemann problem, which becomes increasingly difficult for complicated set of hyperbolic P.D.E.

 System of conservation laws describing conservation of mass, momentum and energy:

 $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0 \qquad (\text{mass})$ $\frac{\partial (\rho \mathbf{v})}{\partial t} + \nabla \cdot [\rho \mathbf{v} \mathbf{v} + \mathbf{I}p] = 0 \qquad (\text{momentum})$ $\frac{\partial E}{\partial t} + \nabla \cdot [(E+p) \mathbf{v}] = 0 \qquad (\text{energy})$

 Total energy density E is the sum of thermal + Kinetic terms:

$$E = \rho \epsilon + \rho \frac{\mathbf{v}^2}{2}$$

• Closure requires an Equation of State (EoS). For an ideal gas one has $\rho \epsilon = \frac{p}{\Gamma - 1}$

Euler Equations: Characteristic Structure

 The equations of gasdynamics can also be written in "quasi-linear" or primitive form. In 1D:

$$\frac{\partial \mathbf{V}}{\partial t} + A \cdot \frac{\partial \mathbf{V}}{\partial x} = 0, \quad A = \begin{pmatrix} v_x & \rho & 0\\ 0 & v_x & 1/\rho\\ 0 & \rho c_s^2 & v_x \end{pmatrix}$$

where $V = [\rho, v_x, p]$ is a vector of primitive variable, $c_s = (\gamma p / \rho)^{1/2}$ is the adiabatic speed of sound.

 It is called "quasi-linear" since, differently from the linear case where we had A=const , here A = A(V).

Euler Equations: Characteristic Structure

• The quasi-linear form can be used to find the eigenvector decomposition of the matrix *A*:

$$\mathbf{r}^{1} = \begin{pmatrix} 1 \\ -c_{s}/\rho \\ c_{s}^{2} \end{pmatrix}, \quad \mathbf{r}^{2} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \mathbf{r}^{3} = \begin{pmatrix} 1 \\ c_{s}/\rho \\ c_{s}^{2} \end{pmatrix}$$

• Associated to the eigenvalues:

$$\lambda^1 = v_x - c_s , \quad \lambda^2 = v_x , \quad \lambda^3 = v_x + c_s$$

 These are the characteristic speeds of the system, i.e., the speeds at which information propagates. They tell us a lot about the structure of the solution.

Euler Equations: Riemann Problem

• By looking at the expressions for the right eigenvectors,

$$\mathbf{r}^{1} = \begin{pmatrix} 1 \\ -c_{s}/\rho \\ c_{s}^{2} \end{pmatrix}, \quad \mathbf{r}^{2} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \mathbf{r}^{3} = \begin{pmatrix} 1 \\ c_{s}/\rho \\ c_{s}^{2} \end{pmatrix}$$

- we see that across waves 1 and 3, all variables jump. These are nonlinear waves, either shocks or rarefactions waves.
- Across wave 2, only density jumps. Velocity and pressure are constant. This defines the <u>contact discontinuity</u>.
- The characteristic curve associated with this linear wave is dx/dt = u, and it is a straight line. Since v_x is constant across this wave, the flow is neither converging or diverging.

Euler Equations: Riemann Problem

• The solution to the Riemann problem looks like

- The outer waves can be either shocks or rarefactions.
- The middle wave is always a contact discontinuity.
- In total one has 4 unknowns: $\rho_L^*, \rho_R^*, v_x^*, p^*$, since only density jumps across the contact discontinuity.

Euler Equations: Riemann Problem

• Depending on the initial discontinuity, a total of 4 patterns can emerge from the solution:

Approximate Riemann Solvers

• Assuming the system to be "frozen" at the local grid interface, one may apply the concepts developed from linear system:

$$F_{i+\frac{1}{2}}^{n} = \frac{1}{2}(F_{i+1}^{n} + F_{i}^{n}) - \frac{1}{2}\sum_{k} |\lambda_{k}| l^{k} \cdot (U_{i+1}^{n} - U_{i}^{n}) r^{k}$$

- Here *l^k* and *r^k* are the left and right eigenvectors of the Euler equations, λ^k is the corresponding eigenvalue. This is known as the <u>Roe</u> Riemann solver.
- A simpler approach that maximize the spectral radius of the Jacobian matrix can be used. This requires only the maximum eigenvalue $\lambda^k = |v| + c_s$. This yields the <u>Rusanov Lax-Friedrichs</u> numerical flux:

$$F_{i+\frac{1}{2}}^{n} = \frac{1}{2}(F_{i+1}^{n} + F_{i}^{n}) - \frac{1}{2}|\lambda_{\max}|(U_{i+1}^{n} - U_{i}^{n})$$

Euler Equations: Shock Tube Problem

• The decay of the discontinuity defines what is usually called the "shock tube problem",

Code Example

- *File name*: euler.f
- <u>Purpose</u>: solve 1D Euler's equation using a 1st-order Lax-Friedrichs method.

• <u>Usage</u>:

- > gfortran –O euler.f –o euler
- > ./euler
- <u>Output</u>: 4-column ascii data files "data.out"

			50		
📔 C:\cyg\	win\home\Andre	ea\Presentations\Copenhagen.2013\Codes\Euler\euler.f - Notepad++	X		
File Edit	t Search View	/ Encoding Language Settings Macro Run Plugins Window ?	Х		
🕞 🗗 🗄	- 🕞 🔂 🖨	🚜 🗅 🗈 Ə C # ½ 🤫 👒 🖫 🔤 🚍 1 🎼 🐼 🗉 🗉 🗹 🐼 🖏 🗸 🗸 🗴 😵	5		
🔚 advecti	ion.c 📙 burger.c	E euler.f			
1 🛱	progr	am euler	^		
2					
3	inclu	de 'common.h'	=		
4					
5	integ	er i, nt, nv			
6	integ	er ibeg, iend			
7	real*	8 u(nvar, nx),v(nvar, nx), flux(nvar, nx)			
8	real*	8 x(nx)			
9	real*	8 t, dt, cmax, cfl, tstop			
10	real*	8 tfreq, df, dx			
11					
12	c ** genera	te grid **			
13					
14	call	grid (x, dx)			
15	ibeg = nghost + 1				
16	iend	= nx - nghost			
17					
18	call	init (v, x)			
19	call	primtocon (v, u, ibeg, iend)			
20					
21	dt	= 1.d-4			
22	cfl	= 0.80			
23	tstop	= 0.2			
24	t	= 0.d0			
25					
26	c ** begin	computation **			
2/		1 0000			
28	ao nt	= 1, 3333			
29			-		
Fortran source file		length: 6022 lines: 271 Ln:1 Col:1 Sel:0 UNIX ANSI	INS		
VII. RIEMANN SOLVERS AND MHD

- Riemann solvers generalize the concept of "<u>upwind</u>" to nonlinear systems of hyperbolic PDE: the discretization is biased towards the direction of propagation of waves.
- The Riemann problem requires the solution of nonlinear systems of equations.
- Depending on the underlying system of PDE the solution may or may not be feasible.

The Riemann Problem

• In CFD, the solution to the Riemann problem depends on the underlying system of conservation laws:

Riemann Problem in MHD/Relativistic MHD

- 7 wave pattern, $\lambda^{(\kappa)} \left(\boldsymbol{U}_{L}^{(\kappa)} \boldsymbol{U}_{R}^{(\kappa)} \right) = \boldsymbol{F} \left(\boldsymbol{U}_{L}^{(\kappa)} \right) \boldsymbol{F} \left(\boldsymbol{U}_{R}^{(\kappa)} \right)$
- across the contact wave, for $B_n \neq 0$, only density has a jump;
- across Alfven waves, [ρ] = [p_{gas}]=0 but normal velocity [v_x]≠ 0
 →magnetic field circularly / elliptically polarized.

Solving the Riemann Problem

- The full analytical solution to the Riemann problem for the Euler equation can be found, but this is a rather complicated task (see the book by Toro).
- In general, approximate methods of solution are preferred.
- The advantage of using approximate solvers is the reduced computational costs and the ease of implementation.
- The degree of approximation reflects on the ability to "capture" and spread discontinuities over few or more computational zones.

Solving the Riemann Problem

- <u>Exact</u> Riemann solvers (nonlinear)
 - Full nonlinear solution:
 - Expensive / impracticable for heavily usage in upwind codes;
- <u>Linearized Riemann solvers</u> (Roe type)
 - require characteristic decomposition in eigenvectors
 - may be prone to numerical pathologies
- <u>HLL-type</u> Riemann solvers (guess-based)
 - based on guess to the signal speeds and on the integral average of the solution over the Riemann Fan;
 - fewer waves are considered in the solution;
 - preserve positivity;

Resolution of Contact Discontinuities

A 2D Example: Axisymmetric PWN

VIII. HIGH-ORDER FINITE VOLUME METHODS

- Upwind methods have a natural, built-in numerical dissipation.
- A discretized PDE gives the exact solution to an equivalent equation with a diffusion term;

• Consider
$$\frac{\partial U}{\partial t} + a \frac{\partial U}{\partial x} = 0$$
, $a > 0$
- Use upwind discretization: $\frac{U_i^{n+1} - U_i^n}{\Delta t} + a \frac{U_i^n - U_{i-1}^n}{\Delta x} = 0$
- Use Taylor expansion on U_i^{n+1} and U_{i-1}^n
- The solution to the discretized equation satisfies exactly
 $\frac{\partial U}{\partial t} + a \frac{\partial U}{\partial x} = \frac{a \Delta x}{2} \left(1 - a \frac{\Delta t}{\Delta x}\right) \frac{\partial^2 U}{\partial x^2} + H.O.T.$

This is an advection-diffusion equation.

Numerical Diffusion

- Generally, the amount of numerical diffusion is controlled by the underlying grid resolution / numerical scheme:
 - spatial reconstruction
 - Riemann solver accuracy
 - (marginally) time stepping

- PROS: numerical diffusion has a stabilizing effect.
- CONS: suppress small scale effect, may prevent growth of numerical instabilities when upwinding is not done correctly.

Improving spatial accuracy

• High order reconstruction can be carried inside each cell by suitable oscillation-free polynomial interpolation:

1st and 2nd Order Reconstruction

• 1st First-order reconstruction:

$$V(x) = V_i$$

• For 2nd-order we use linear reconstrution:

$$V(x) = V_i + \frac{\delta V}{\Delta x}(x - x_i)$$

Preventing Oscillations

 A simple and effective way to achieve 2nd or 3rd order accuracy in time is to treat the PDE in semi-discrete form:

$$\int \left(\frac{\partial \boldsymbol{q}}{\partial t} + \nabla \cdot \boldsymbol{F}\right) dV = 0 \quad \Longrightarrow \quad \frac{d\bar{\boldsymbol{q}}}{dt} = -\oint \tilde{\boldsymbol{F}} \cdot d\boldsymbol{S}$$

• In such a way the PDE becomes a regular ordinary differential equation (ODE) in time;

$$\frac{d\bar{\boldsymbol{q}}}{dt} = \boldsymbol{R}(\boldsymbol{q}, t) = \boldsymbol{R} \quad \Longrightarrow \quad \bar{\boldsymbol{q}}^{n+1} - \bar{\boldsymbol{q}}^n = \int_n^{n+1} \boldsymbol{R} \, dt$$

• Standard integration based on predictor/corrector schemes can then be used to solve ODEs.

• Using the trapezoidal method, the solution of our ODE writes:

$$\bar{\boldsymbol{q}}^{n+1} = \bar{\boldsymbol{q}}^n + \frac{\Delta t}{2} \left(\boldsymbol{R}^n + \boldsymbol{R}^{n+1} \right) + O(\Delta t^3)$$

• the unknown \bar{q}^{n+1} appears on both side of the equation: use an estimate (predictor) for R^{n+1} with Euler method:

$$\bar{\boldsymbol{q}}^* = \bar{\boldsymbol{q}}^n + \Delta t \boldsymbol{R}^n + O(\Delta t^2)$$
$$\bar{\boldsymbol{q}}^{n+1} = \bar{\boldsymbol{q}}^n + \frac{\Delta t}{2} \left(\boldsymbol{R}^n + \boldsymbol{R}^* \right) + O(\Delta t^3)$$

• This is the second-order explicit Runge-Kutta method (or Heun's method) It is 2nd order accurate.

The Reconstruct-Solve-Update Algorithm

- Start from volume-averages $\langle {f U}
 angle_i^n$
- Reconstruct interface values from zone averages using a high-order non-oscillatory polynomial:

 $\begin{cases} \mathbf{U}_{i+\frac{1}{2}}^{L} = \lim_{x \to x_{i+\frac{1}{2}}^{-}} \mathbf{U}_{i}(x) ,\\ \mathbf{U}_{i+\frac{1}{2}}^{R} = \lim_{x \to x_{i+\frac{1}{2}}^{+}} \mathbf{U}_{i+1}(x) , \end{cases}$

- Solve Riemann problems between adjacent, discontinuous states.
 → Compute interface flux.
- Update conserved variables with time stepping algorithm (e.g. RK2):

A "Pseudo-Code"...

IX. MULTIDIMENSIONAL ISSUES: DIVERGENCE OF $\nabla \cdot B = 0$

Multi Dimensional Integration

- Integration in more than one dimensions can be achieved using two distinct approaches:
 - Dimensionally Split schemes: solve the PDE as a sequence of 1-D subproblems.

$$\mathbf{q}^{*} = \mathbf{q}^{n} - \Delta t \mathcal{L}_{x}(\mathbf{q}^{n}) \qquad \mathbf{q}^{n+1} = \mathbf{q}^{*} - \Delta t \mathcal{L}_{y}(\mathbf{q}^{*})$$

Dimensionally Unsplit schemes: solve the full problem in one step:

$$\mathbf{q}^{n+1} = \mathbf{q}^n - \Delta t \mathcal{L}_x(\mathbf{q}^n) - \Delta t \mathcal{L}_y(\mathbf{q}^n)$$

$\nabla \cdot B$ Condition

 Numerically, the solenoidal condition is fulfilled only at the truncation level and non-solenoidal components may be generated during the evolution:

 Magnetic monopoles cause unphysical accelerations of the plasma in the direction parallel to the field lines (BrackBill & Barnes 1980)

Cell Centered vs Staggered

- $\nabla \cdot B = 0$ cannot be satisfied for any type of discretization;
- Robustness of a method can be assessed on practical basis by extensive numerical testing.
- Cell Centered Methods: magnetic field treated as volume average over the zone:
 - Projection method (BrackBill & Barnes, 1980)
 - Powell's 8-wave formulation (Powell 1994, Powell et al. 1999)
 - Field CD (Toth 2000)
 - Divergence cleaning (Dedner 2002, Mignone et al. 2010)
- *Staggered* (*face-centered*) methods:
 - magnetic field has a staggered representation where field components live on the face they are normal to (Evans & Hawley 1988, Balsara 2000, 2004).

- Correct the magnetic field after the time step is completed;
- Starting from **B**ⁿ we obtain **B**^{*} which is not divergence-free.
- Then, using Hodge-projection: $B^* = \nabla \times A + \nabla \phi$
- Taking the divergence of both sides gives

$$\nabla^2 \phi = \nabla \cdot \boldsymbol{B}^*$$

which can be solved for the scalar function ϕ .

- The magnetic field is then corrected as $B^{n+1} = B^* \nabla \phi$
- Cons: requires the solution of a Poisson equation.

 Start from the primitive form of the MHD equations without discarding the ∇·B term → quasi-conservative form

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) &= 0 \\ \frac{\partial (\rho \mathbf{u})}{\partial t} + \nabla \cdot \left(\rho \mathbf{u} \mathbf{u} + \left(p + \frac{\mathbf{B} \cdot \mathbf{B}}{2\mu_0} \right) \mathbf{I} - \frac{\mathbf{B} \mathbf{B}}{\mu_0} \right) &= -\frac{1}{\mu_0} \mathbf{B} \nabla \cdot \mathbf{B} \\ \frac{\partial \mathbf{B}}{\partial t} + \nabla \cdot (\mathbf{u} \mathbf{B} - \mathbf{B} \mathbf{u}) &= -\mathbf{u} \nabla \cdot \mathbf{B} \\ \frac{\partial E}{\partial t} + \nabla \cdot \left[\left(E + p + \frac{\mathbf{B} \cdot \mathbf{B}}{2\mu_0} \right) \mathbf{u} - \frac{1}{\mu_0} (\mathbf{u} \cdot \mathbf{B}) \mathbf{B} \right] &= -\frac{1}{\mu_0} (\mathbf{u} \cdot \mathbf{B}) \nabla \cdot \mathbf{B} \end{aligned}$$

2. Powell's Method (8 wave)

- The non-conservative form is discretized by introducing an 8th wave in the Riemann solver associated with jumps in the normal component of magnetic field.
- With the non-conservative formulation ∇·B errors generated by the numerical solution do not accumulate at a fixed grid point but, rather, propagate together with the flow.
- For many problems the 8-wave formulation works.
- However, in problems containing strong shocks, the nonconservative source terms can produce incorrect jump conditions and consequently the scheme can produce incorrect results

3. Hyperbolic Divergence Cleaning

- The divergence constraint is coupled to Faraday's law by introducing a new scalar field function ψ (generalized Lagrangian multiplier).
- The second and third Maxwell's equations are thus replaced by

$$\begin{cases} \nabla \cdot \mathbf{B} = \mathbf{0}, \\ \frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B}), \end{cases} \Rightarrow \begin{cases} \mathcal{D}(\psi) + \nabla \cdot \mathbf{B} = \mathbf{0}, \\ \frac{\partial \mathbf{B}}{\partial t} + \nabla \psi = \nabla \times (\mathbf{v} \times \mathbf{B}), \end{cases}$$

where \mathcal{D} is a linear differential operator.

- An efficient method may be obtained by choosing $\mathcal{D}(\psi) = c_h^{-2} \partial_t \psi + c_p^{-2} \psi$ yielding a mixed hyperbolic/parabolic correction.
- Direct manipulation leads to the telegraph equation:

$$\frac{\partial^2 \psi}{\partial t^2} + \frac{c_h^2}{c_p^2} \frac{\partial \psi}{\partial t} = c_h^2 \Delta \psi$$

 \rightarrow errors are propagated to the domain at finite speed c_h and damped at the same time.

 The resulting system is called the generalized Lagrange multiplier (GLM-MHD) and includes 9 evolution equation:

$$\begin{split} &\frac{\partial\rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = \mathbf{0}, \\ &\frac{\partial(\rho \mathbf{v})}{\partial t} + \nabla \cdot \left[\rho \mathbf{v} \mathbf{v}^T - \mathbf{B} \mathbf{B}^T + \mathbf{I} \left(p + \frac{\mathbf{B}^2}{2} \right) \right] = \mathbf{0}, \\ &\frac{\partial \mathbf{B}}{\partial t} + \nabla \cdot (\mathbf{v} \mathbf{B}^T - \mathbf{B} \mathbf{v}^T) + \nabla \psi = \mathbf{0}, \\ &\frac{\partial E}{\partial t} + \nabla \cdot \left[\left(E + p + \frac{\mathbf{B}^2}{2} \right) \mathbf{v} - (\mathbf{v} \cdot \mathbf{B}) \mathbf{B} \right] = \mathbf{0}, \\ &\frac{\partial\psi}{\partial t} + c_h^2 \nabla \cdot \mathbf{B} = -\frac{c_h^2}{c_p^2} \psi, \end{split}$$

 Divergence errors propagate with speed c_h even at stagnation points where v = 0.

4. Constrained Transport

- Staggered magnetic field treated as an area-weighted average on the zone face.
- Thus, different magnetic field components live at different location;

• A discrete version of Stoke's theorem is used to update them:

$$\int \left(\frac{\partial \boldsymbol{b}}{\partial t} + \nabla \times \boldsymbol{\mathcal{E}}\right) \cdot d\boldsymbol{S}_d = 0 \quad \Longrightarrow \quad \frac{db_{\boldsymbol{x}_d}}{dt} + \frac{1}{S_d} \oint \boldsymbol{\mathcal{E}} \cdot d\boldsymbol{l} = 0$$

4. Constrained Transport in 2D

• It is easy to show that the numerical divergence of **b** defined by

$$(\nabla \cdot \mathbf{b})_{j,k} = \frac{b_{j+1/2,k}^x - b_{j-1/2,k}^x}{\Delta x} + \frac{b_{j,k+1/2}^y - b_{j,k-1/2}^y}{\Delta y}$$
does not change due to perfect cancellation of term to machine accuracy (Toth, 2000).

Scheme Comparison

$\nabla \cdot B$ Condition

	Cell-Centered	Staggered
Pros	 keeps "native" code discretization better for I.C. and B.C. easier to extend to AMR grids Can be used in dimensionally split schemes 	 keep ∇·B = 0 to machine accuracy elegant and consistent discretization lead to perfectly consistent, well posed Riemann problems
Cons	 require monopole control algorithm 8 wave / Projection: > Jump of B at face → Riemann problem > Break conservation (??) 	 tricky extension to AMR more work on B.C. and I.C. Require solution of multi D Riemann problems (UCT, L. Del Zanna & Londrillo)

X. BEYOND IDEAL MHD

Beyond Ideal MHD

- The range of validity of MHD can be extended by several means, at the cost of introducing additional terms and more complex algorithms.
- One will then have to deal with *different time scales*.
- Example are:
 - *Dissipative effects* (viscosity, Ohmic dissipation, thermal conduction, etc...)
 → mixed hyperbolic / parabolic PDE.
 - Extended MHD including generalized Ohm's law (Hall-MHD, electron pressure) → dispersive waves, non-homogenous PDE with stiff sources (RMHD);
 - Fluid-particles *hybrid* algorithms.

- Parabolic (diffusion) term describes transfer of momentum or energy due to microscopical processes without requiring bulk motion.
- Examples: viscosity, magnetic resistivity, thermal conduction.

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{v}) &= 0 \\ \frac{\partial (\rho \boldsymbol{v})}{\partial t} + \nabla \cdot \left[\rho \boldsymbol{v} \boldsymbol{v}^T - \boldsymbol{B} \boldsymbol{B}^T \right] + \nabla p_t &= \nabla \cdot \boldsymbol{\tau} + \rho \boldsymbol{g} \\ \frac{\partial \mathcal{E}}{\partial t} + \nabla \cdot \left[(\mathcal{E} + p_t) \, \boldsymbol{v} - (\boldsymbol{v} \cdot \boldsymbol{B}) \, \boldsymbol{B} \right] &= \nabla \cdot \boldsymbol{\Pi}_{\mathcal{E}} - \boldsymbol{\Lambda} + \rho \boldsymbol{v} \cdot \boldsymbol{g} \\ \frac{\partial \boldsymbol{B}}{\partial t} - \nabla \times (\boldsymbol{v} \times \boldsymbol{B}) &= -\nabla \times (\eta \boldsymbol{J}) \\ \frac{\partial (\rho X_{\alpha})}{\partial t} + \nabla \cdot (\rho X_{\alpha} \boldsymbol{v}) &= \rho S_{\alpha} \end{aligned}$$

 No upwinding is required since parabolic problems have infinite propagation speed → central differences are OK!

Explicit Scheme for Parabolic PDE

- However, explicit schemes subject to restrictive constraint:
- In 1-D with constant D:

$$\frac{\partial U}{\partial t} = D \frac{\partial^2 U}{\partial x^2}$$

- Using FTCS: $U_i^{n+1} = U_i^n + C(U_{i-1}^n 2U_i^n + U_{i+1}^n)$
- Where $C = D\Delta t / \Delta x^2$ is the (parabolic) CFL number
- Stability demands $C \leq \frac{1}{2} \rightarrow \Delta t \leq \Delta x^2 / (2D)$
- This is quite restrictive !

Implicit Schemes for Parabolic PDE

• Using a backward in time, centered in space (BTCS):

 $U_i^{n+1} = U_i^n + C(U_{i-1}^{n+1} - 2U_i^{n+1} + U_{i+1}^{n+1})$

has no stability limit (*unconditionally stable !*)

• However, it leads to an implicit (linear) system:

 $\mathsf{A}\{U\}^{n+1} = \{U\}^n, \qquad \mathsf{A} \in \mathbb{R}^{N_x \times N_x}$

- This is a global operation and thus not can not be efficiently carried out on parallel domains.
- Alternative \rightarrow Accelerated explicit methods \rightarrow
Accelerated Explicit Methods

 Divide each time step Δt in s sub-steps based on a polynomial sequence and require stability at the end of a cycle of s substeps:

- In practice we require the super-step to be as large as possible, exploiting properties of orthogonal polynomial, <u>Chebyshev</u> (Super Time Stepping [STS]) or <u>Legendre</u> (Runge-Kutta Legendre [RKL]).
- The scheme is still explicit !

- RKL methods show better stability properties and are preferred over STS.
- Choosing s sub-steps we can cover a time step equal to

$$\Delta t \leq \Delta t_{expl} rac{s^2+s-2}{4}$$

where Δt_{expl} is the standard explicit method time step.

- The method is easily parallelizable.
- Scaling on 2D blast wave:

Algorithm	N_X	Execution Time [s]
Explicit	192	1 <i>m</i> : 13 <i>s</i>
RKL	192	28 <i>s</i>
Explicit	384	18 <i>m</i> : 32 <i>s</i>
RKL	384	5 <i>m</i> : 19 <i>s</i>
Explicit	768	4 <i>h</i> : 21 <i>m</i> : 15 <i>s</i>
RKL	768	49 <i>m</i> : 17 <i>s</i>
Explicit	1536	3d : 5h : 13m : 10s
RKL	1536	10 <i>h</i> : 4 <i>m</i> : 55 <i>s</i>

Recommended Books

Recommended Codes

<u>PLUTO</u>^{1,2}

→ a modular parallel code providing a *multi-physics* as well as a *multialgorithm* framework for the solution of mixed hyperbolic/ parabolic conservation laws in astrophysics;

http://plutocode.ph.unito.it

(v. 4.3)

¹Mignone et al. ApJS (2007), 170, 228-242; ²Mignone et al, ApJS (2012), 198, 7

THE END