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. MHD EQUATIONS




Magetohydrodynamics: Assumptions

e |deal MHD describes an electrically conducting single fluid,
assuming:

— low frequency w <K Wp, WK We, W Vpe, WK Vep
— large scales L > wip, L> R., L> Apgp,

— Ignores electron mass and finite Larmor radius effects;

— Assume plasma is strongly collisional = L.T.E., isotropy;

— Fields and fluid fluctuate on the same time and length scales;

— Neglect charge separation, electric force and displacement current.



The MHD Equations

% + V- (pu) 0 (Continuity)
ou 1 :
p equ-v-u —Vp+ I xB (Eq. of motion)
8(;:) + V - (peu) —pV - u (Thermodynamics I law)
B
a(‘?—t +V xE 0 (Faraday)
J - “VxB (Ampere)
4
E + % xB = 0 (Ohm)
V-B =0 (Divergence — free)
pe = pe(p,p) (EoS/Closure)



MHD Equations in Conservative Form

% + V- (pu) = 0 (Mass cons.)
Jd(pu) BB B* _
5 1V- [puu St + (p - . = 0 (Momentum cons.)
OF B* (u-B)
- N v [(E +p+ 8_7r) u— i B] = 0 (Energy cons.)
0B
o + V- (uB — Bu) = 0 (Mag. flux cons.)

« MHD suitable for describing plasma at large scales;

e Good first approximation to much of the physics, even when some of
the conditions are not met.

 Draw some intuitive conclusions concerning plasma behavior without
solving the equations in detail.

* Fluid equations are hyperbolic conservation laws.




Il. BASIC DISCRETIZATION METHODS
FOR HYPERBOLIC PDE




Numerical Discretizations

 We consider our prototype first-order partial differential equation
(PDE):

oU  dF(U)

ot  Ox -

also known as a “Conservation Law”.

* Two popular methods for performing discretization:
— Finite Differences (FD);
— Finite Volumes (FV);

* For some problems, the resulting discretizations look identical, but
they are distinct approaches;



Finite Difference Methods

A finite-difference method stores the solution at specific points in
space and time;

I - e | I
—e——o—1——o—1—0o—|—o—1—0—
-1 i i+1
Associated with each grid point is a function value,

U'=U(x;,t")

We replace the derivatives in our PDE with differences between
neighbour points.



Finite Difference Methods

From Taylor expansion of the function around (x,t") we obtain, e.g.

— Forward derivative (in time):

oU(z,t) UM -Ur At (32(]

ot At 2 \ Ot2

n+1 n
S oU(e,t) UM -
ot At 4

— Central derivative (in space):

) +mor

Truncation

oU(z,t) UM, —Ur, Az? (U errors
= — H.O.T.
ox QAT 6 ox3 p e

or simply 6U(§x,t) ~ U"*;; Uit @A:ﬂ)
T T




Finite Volume Methods

* In a finite volume discretization, the unknowns are the spatial
averages of the function itself:

. 1
1 )
n n
U), = U(x,t")dx
Az |,
. 1
'T32
where x,,, and x;,,, denote the location of the cell interfaces.
Nz i+72
i-1 i i+1

* The solution to the conservation law involves computing fluxes
through the boundary of the control volumes



Finite Volume Formulation

 The conservative form of the equations provides the link between
the differential form of the equation,

oUu  OF

ot | 8:13:0

and the integral form, obtained by integrating the equations over

a time interval At = t"*! —t" and cell size Ax = Xx;,,,, — X, ;

I / / ((S‘U (3’F) g dr —

tn+1

tn—l—l

tn




Finite Volume Formulation

e Spatial integration yields
tn—l—l

/tn [Am% {U); + (FH% — Fi_%>] dt = 0

1 [Ti+d
with (U), = E/ “U(x,t)dr  being a spatial average.
:Ei_%_

* |ntegration in time gives

cntl gl
Az (U — (U)T) + At (F CoF *2) — 0

¢ T3 ~3

tn+1

where F > = — F (U(:pii%)) dt is a temporal average.



Finite Volume Formulation

Rearranging terms: (UYL = (Y — % (F"':rl% . Fﬁt%)
€T 1 5 ’L—g

Inteqgral or Conservation form

where O ,
- | .
1 [Ti+d F. |, IF; 1
(U); = — Uz, t") dx i73 B
ot Ti-l | : <U>z | :
tn—l—l | |
ﬁ”::l% Y F (U(mzi;,t» dt t" : l

 The conservation form is an exact relation, no approximation

introduced;

It provides an integral representation of the original differential
equation.

 The integral form does not make use of partial derivatives!



Importance of Conservation Form

Al [ opitl o TNl
Oyt = Uyr - o (B - B

' b Ag \C i3 —3

The conservation form ensure correct description of discontinuous
waves in terms of speed and jumps;

It guarantees global conservation properties (no mass / energy /
momentum is created or destroyed unless a net flux exists);

To second-order accuracy, a finite difference method and a finite
volume method look essentially the same;

Approximation introduced in the computation of the flux.



Flux computation: the Riemann Problem

. . . n+1
* Since the solution is known only at 7, 1 , 1
: : . : | F.
some kind of approximation is required Fiis Fits

in order to evaluate the flux through | | <U>Z i |
the boundary:

~n+% B 1
Y _Kt/tn P (Uleg,y.1)) di

e This achieved by solving the so-called “Riemann Problem”, i.e.,
the evolution of an inital discontinuity separating two constant
states. The Riemann problem is defined by the initial condition:

Uy for T <1 ,
U(x,0) = —  Ulzyy1,t>0) ="

Urp for x> Tiyl



The Riemann Problem

/> Cell Interface

Left State

U,

Right State

Initial Discontinuity

| I+7%2 I+1



The Riemann Problem

t>0

Left State

U,

I’ Cell Interface

//) Flux = Solution on the axis

Discontinuity Breakup

D

N\
J
l—" !

/" Right State

1+15 i+ 1



lll. THE LINEAR ADVECTION EQUATION:
CONCEPTS AND DISCRETIZATIONS




The Advection Equation: Theory

First order partial differential equation (PDE) in (x,t):
oU (x,1) a oU (x,1)
ot Ox

Hyperbolic PDE: information propagates across domain at finite speed
- method of characteristics

=0

Physical domain of dependence
. A
— . dx t : ) Uit
Characteristic curves satisfy: E = a ! ’
o At
Along each characteristics: :
dU @U dx OU _ 0 * U(x-at,0) ‘
i ot dtox ST x

— The solution is constant along characteristic curves.



The Advection Equation: Theory

* for constant a: the characteristics are straight parallel lines and the
solution to the PDE is a uniform shift of the initial profile:

U(x,t) =U(x — at,0)

* The solution shifts to the right (for a > 0) or to the left (a < 0):




Discretization: the FTCS Scheme

oU (x,1) a@U(:U,t)

Consider our model PDE 4 —0
ot Ox

Forward derivative in time: ~ 9U  _ Urtt oy L O(AY) ) Ny
ot At < l

Centered derivative in space: ou ~ Uin — Uit A2 4
ox 20 x HOCEYY

Putting all together and solving with respect to U"*! gives
C

n+1 n n n
U'zl o Uz o 5 ( +1 i—l)

where C=a At/Ax is the Courant-Friedrichs-Lewy (CFL) number.
We call this method FTCS for Forward in Time, Centered in Space.

It is an explicit method.



The FTCS Scheme

oU
ot
oU
ox

At t=0, the initial condition is a square pulse with periodic
boundary conditions:

Time = 0.000; CFL = 0,10
2'0 I T T T T T T y T T T T T y T 7 T
FTCS
: —————— Exact
15k il
Ut - Uy o
~ St +0(AY
U'Tfl—l - Un—l 2 Q [ I
N e o A ] il
=)
! 875) |
O'O i . 1 ; i i ] : i 2 1 A i : ] )
0.2 0.4 0.6 0.8
X

Something isn’t right... why ?




FTCS: von Neumann Stability Analysis

Let’s perform an analysis of FTCS by expressing the solution as a
Fourier series.

Since the equation is linear, we only examine the behavior of a
single mode. Consider a trial solution of the form:

U= A", 0=FkAx

S : Artt C o o
Plugging in the difference formula: =1—— (e’ —e")
An 2
An—}—l 2
— | — 1+ C%sin?0 > 1
An

Indipendently of the CFL number, all Fourier modes increase in
magnitude as time advances.

This method is unconditionally unstable!




Forward in Time, Backward in Space

Let’s try a difference approach. Consider the backward formula for
the spatial derivative:

U Up-Up,
or Az

The resulting scheme is called FTBS: ‘

+0(Az) = |UM'=U-C(U!-U",)

n+1

n

Apply von Neumann stability analysis on the resulting discretized
equation:

An—}—l 2
‘ I =1—-2C(1—-C)(1 —cosb)
n+1
Stability demands 'AAn <1 = 20(1-C)>0

for a < 0 the method is unstable, but
for a > 0 the method is stable when 0<C=aAt/Ax < 1.




Forward in Time, Forward in Space

Repeating the same argument for the forward derivative

aU lfjn, . lr_n
~ 1+ 7 | O ﬁ s l ﬂH—l l 8L [ Tn l n
8513 ASC ( 513) ’ ’ C ( ol )

7

n+1
The resulting scheme is called FTFS: ‘ ;

2

=14+2C(1—C)(1 — cosb)

n+1

Apply stability analysis yields

If a > 0 the method will always be unstable

However, ifa <0Oand -1 <C=aAt/Ax <0 then this method is
stable;




Stable Discretizations: FTBS, FTFS

Time = 0.410; CFL = 0,50
2‘0 [ ! ' ! | ! ' ! I ' ' ! I ' ! I
FTES
Rt Exoct
1| 5|
[ Time = 0.297; CFL = 0,50
2’O i ! ! i I ! ' ! I ! ' ! I ' ! ! I
e S I | R Exocl
x 10 ]
= 150 .
04)
1.0 7]
0 5
O E :
Forward in Time, 0.2 0.5
Backward in Space
O‘O B . : . ] L . . ] . _—.— L ] . . . ] .
Forwardin Time, g 5 0.4 0.6 0.8
Forward in Space -




Stability: the CFL Condition

* Since the advection speed a is a parameter of the equation, Ax is
fixed from the grid, the previous inequalities on C=aAt/Ax are
stability constraints on the time step for explicit methods

Az‘<£

~ la

* At cannot be arbitrarily large but, rather, less than the time taken
to travel one grid cell (= CFL condition).

* In the case of nonlinear equations, the speed can vary in the
domain and the maximum of a should be considered instead.



The 15t Order Godunov Method

 Summarizing: the stable discretization makes use of the grid point
where information is coming from:

a>0 i L a<0
( a At
urtt = gr—- — (U"-U" for a >0
o = ‘Upwind’: ) ' Y Ax (v 1)
alt
\ U,L-n—l_l = UZn—E( 'Zl—i—l UZZ) for a <0

* This is also called the first-order Godunov method;



Conservative Form

a a
* Define the “flux” function /7, = 5 (Ur, +UP) — ’2—’ (Ur, — U7)

so that Godunov method can be cast in conservative form

At
n+1 n n ___m
Vi =Y TG (Fi+% Fz‘—%)

ra>0 ‘ a<0—l
al\t a At

U+t = Up = == (Uf - ULy) Uy = U = —— (Ul = U7)

* The conservative form ensures a correct description of
discontinuities in nonlinear systems, ensures global conservation

properties and is the main building block in the development of
high-order finite volume schemes.




The Riemann Problem

Ol /> Cell Interface
Left State
U,
Right State
R
Initial Discontinuity
X
>

| I+7%2 I+1



The Riemann Problem

t>0,a>0
i /> Cell Interface
Left State
U J - s Flux = Solution on the axis
L //)
o
Right State
R
Discontinuity Breakup
X
>

| I+7%2 I+1



Code Example

File name: advection.c

Purpose: solve the linear advection

equation using the 1st-order
Godunov method.

Usage:

> gcc advection.c -o advection
> ./advection

Output: two-column ascii data file.

g C:\cygwin\home\Andrea\Presentations\Copenhagen.2013\Codes\Advection\advection.c - Notepad++ ‘ = |[@] X4
File Edit Search View Encoding Language Settings Macro Run Plugins Window ? X
cBBEHEHRldHh| eyl 2z BEBET EQCENNEIEav gy

=] advection.c I

19 #define METHOD UPWIND /* -- either UPWIND or FTCS -- */
20

21 J% RRRRRRRRKK k) KKk k% EHKHEHKKKK X [

22 int main()

23 /*

24 *

25 * Solve the linear advection equation with a first-order
26 * method.

27 *

28 * Last Modified 14 Nov 2011 by A. Mignone (mignone@ph.unito.it)
29 *

1 #include <stdio.h>

2 #include <stdarg.h>

3 #include <string.h>

4 #include <math.h>

5 #include <stdlib.h>

6

7 double Initial_Condition (double x);

8 void Integrate (double *u@, double *ul, double dtdx, int ibeg, int iend);
9

10 #define PI 3.14159265358979

11 #define NGHOST 2

12 #define NX 100

13 #define a 1.0

14 #define FTCS 1 /* -- forward in time, centered in space -- */
15 #define UPWIND 2 /* -- choose depending on the sign of a -- */
16

17

18

11

C source file length: 3380 lines: 161 Ln:1 Col:1 Sel:0 UNIX

ANSI

INS




IV. LINEAR SYSTEMS OF HYPERBOLIC
CONSERVATION LAWS




System of Equations: Theory

We turn our attention to the system of equations (PDE)
oq , 4, .99 _
I T
ot ox
where q = {q1, g2, ...q., } is the vector of unknowns. Aisa m x
M constant matrix.

For example, for m=3, one has

dq dq dqo dq3
a4 20 4,02 4,78
o + A1 py + Aj9 By + A13 Ey

dq2 dq dqo dq3
99 | A, LI 4 4,982 4, 9B
By + Ao 97 + A22 5 + Ao3 P 0
0 0 dq- 3,
T & R P I P A



System of Equations: Theory

The system is hyperbolic if A has real eigenvalues, A! =... =A™ and

a complete set of linearly independent right and left eigenvectors
r and /< (¢ 1*=§,) such that

A . frslﬂ _ /\/g,r,/\:
5. A = k) for E=1,...m

For convenience we define the matrices A = diag(A¥), and

)

12

R = (rl\rz\...\rm> , L=R1'=

\ T/

Sothat AR=RA,LA=AL,L-R=R-L=1,L-AR=A.



System of Equations: Theory

The linear system can be reduced to a set of decoupled linear
advection equations.

Multiply the original system of PDE’s by [ on the left:

) ) )
L. (“HA ‘q> 0.9 o4 p.r %9

0 ox ot Ox
Define the characteristic variables w=L-qg so that
ow ow
— + A —=0
ot ox

Since A is diagonal, these equations are not coupled anymore.



System of Equations: Theory

In this form, the system decouples into m independent advection
equations for the characteristic variables:

Ow Ow ow” ow”
ot 0x ot ox

where . & (k=1,2,...,m) is a characteristic variable.
w” =1"-q

ow?! | )\1 owl 0
: ot oxr
When m=3 one has, for instance:
Ow? 2 w?
ot - A oxr 0

Ow> | \30w> __
ot A Ox =0




System of Equations: Theory

The m advection equations can be solved independently by applying the
standard solution techniques developed for the scalar equation.

In particular, one can write the exact analytical solution for the k-th
characteristic field as

w*(z,t) = w*(z — \¥t,0)

i.e., the initial profile of w* shifts with uniform velocity A%, and

wh(z — NFt,0) =17 - q(z — \Ft,0)

is the initial profile.

* The characteristics are thus constant along the curves dx/dt = A



System of Equations: Exact Solution

Once the solution in characteristic space is known, we can solve the
original system via the inverse transformation

k=m k=m

q(z,t) = R - W(:ct)—Zw(xt)r Zw(:c—)\ktO)r

The characteristic varlables are thus the coeff|C|ents of the right
eigenvector expansion of g.

The solution to the linear system reduces to a linear combination of m
linear waves traveling with velocities A" .

Expressing everything in terms of the original variables g,

k=m

q(z,t) = » 1°-q(z — A", 0)r"




Riemann Problem for Discontinuous Data

If g is initially discontinuous, one or more characteristic variables
will also have a discontinuity. Indeed, at t = 0,

.k .
w; =1"-qy it <

wh(x,0) =1" - q(x,0) = {

: 3 .
wh =1"-qp if T > T

In other words, the initial jump q, - q, is decomposed in several
waves each propagating at the constant speed A and
corresponding to the eigenvectors of the Jacobian A:

1.1 2,2
dr —q; = a'r +afrs + -+ oM™

where o =1"-(qr — q;) are the wave strengths



Riemann Problem for Discontinuous Data

* For the linear case, the exact solution for each wave at the cell
interface is:

) wy if  A">0
w" ( Litd t) w" <$i+% -\, O) = K . k,
2 ’ wp if AT <0

* The complete solution is found by adding all wave contributions:

( I+2 ) Z war - Z uer

k:\p.>0 k:\ <0

~

* and the flux is finally computed as FH% =A-q (xH%, t)



The Riemann Problem

X=Alt tt x=2x

q

(X120 l‘)’,\

X=A3t

N \

’
v
’
’
4
’
v
,
’
v
’
v
,
’
v
,

3 1
X/+%')L t XH_%-AZt XH_%'A« t

> X

Point (x,,,.,,t) traces back to the right of the A' characteristic emanating from
the initial jump, but to the left of the other 2, so the solution is:

. S | 2.2 3,.3
q(:vi+%,t)—w3r T WprT - wir



Numerical Implementation

 We suppose the solution at time level n is known as g” and we
wish to compute the solution g"*! at the next time level n+1.

* Our numerical scheme can be derived by working in the
characteristic space and then transforming back:

" At
@ =D e e (FLy—F)

n q;l —I—ql n
where |[F 1= A = ——Z’)\A‘lk Qi1 — %)TA

2

is the Godunov flux for a linear system of advection equations.



V. NONLINEAR SCALAR HYPERBOLIC
PDE




Nonlinear Advection Equation

We turn our attention to the scalar conservation law

ou  Of(u)

@t+ ox =0

Where f(u) is, in general, a nonlinear function of u.

To gain some insights on the role played by nonlinear effects, we
start by considering the inviscid Burger’s equation:

Ou 0 (W) _
ot oz \ 2 )




Nonlinear Advection Equation

. , . ou ou
We can write Burger’s equation also as Fm + U“@_ =0
T

In this form, Burger’s equation resembles the linear advection
equation, except that the velocity is no longer constant but it is
equal to the solution itself.

The characteristic curve for this equation is

dx (2.1) —> du ou N ou dx
dt ’ dt ot  Ox dt

=0
— u is constant along the curve dx/dt=u(x,t) = characteristics are

again straight lines: values of u associated with some fluid element
do not change as that element moves.



Nonlinear Advection Equation

ou ou

* From —— 44— =0
ot Ox
one can predict that, higher values of u will propagate faster than

lower values: this leads to a wave steepening, since upstream
values will advances faster than downstream values.

t=0 -

u(x)




Nonlinear Advection Equation

* Indeed, at t=1 the wave profile will look like:

U(xy

-4 -2 0 2 4

* the wave steepens...



Nonlinear Advection Equation

* If we wait more, we should get something like this:

277

/

\/

e A multi-value functions ?! = Clearly NOT physical !



Burger Equation: Shock Waves

* The correct physical solution is to place a discontinuity there:
a shock wave.

Shock position

~

/

T~

v

* Since the solution is no longer smooth, the differential form is not
valid anymore and we need to consider the integral form.



Burger Equation: Shock Waves

e This is how the solution should look like:

1.0
0.8
0.6

0.4

0.0 .

 Such solutions to the PDE are called weak solutions.



Burger Equation: Shock Waves

* Let’s try to understand what happens by looking at the
characteristics.

* Consider two states initially separated by a jump at an interface:

A

u(x)‘ !

* Here, the characteristic velocities on the left are greater than
those on the right.



Burger Equation: Shock Waves

* The characteristic will intersect, creating a shock wave:

X

* The shock speed is such that A(u,) > S > A(u,). This is called the
entropy condition.




Nonlinear Advection Equation

 The shock speed S can be found using the Rankine-Hugoniot jump
conditions, obtained from the integral form of the equation:

flur) — f(ur) = S(ur — ur)

* For Burger’s equation f(u) = u?/2, one finds the shock speed as

ur, + uR

S = 5




Burger Equation: Rarefaction Waves

* Let’s consider the opposite situation:

u(x)‘ _ Ug

u,

X

 Here, the characteristic velocities on the left are smaller than
those on the right.



Burger Equation: Rarefaction Waves

* Now the characteristics will diverge:

X

* Putting a shock wave between the two states would be incorrect,
since it would violate the entropy condition. Instead, the proper
solution is a rarefaction wave.




Burger Equation: Rarefaction Waves

A rarefaction wave is a nonlinear

1.0[

wave that smoothly connects the
left and the right state. It is an

0.6F 5

expansion wave. .
0.4 -
a2f ]
The solution can only be self- ook . |
similar and takes on the range of o - , ’ )

values between u, and u,.

The head of the rarefaction moves at the speed A(u;), whereas the tail
moves at the speed A(u,).

The general condition for a rarefaction wave is A(u,)<A(ug)

Both rarefactions and shocks are present in the solutions to the Euler
equation. Both waves are nonlinear.



Burger Equation: Riemann Solver

* These results can be used to write the general solution to the
Riemann problem for Burger’s equation:

— If u, > u, the solution is a discontinuity (shock wave). In this case

ur if x—St<0 S_UL—|—UR

u(x’t): urp it z—-—St>0 2

— If u < u, the solution is a rarefaction wave. In this case

(wup  if z/t <up
w(z,t) = ¢ z/t if up <z/t<ugp

urp if x/t>ug

\



Nonlinear Advection Equation

e Solutions look like

S — =0 —
1t — =1 ——
2 1 > —
0.8 0.8
0.6 0.6
~~
2 2
> >
0.4 0.4
0.2 0.2
0 ol
-4 2 ° 2 4 -4 -2 ° 2 4

X

 for ararefaction and a shock, respectively.



Code Example

File name: burger.c
Purpose: solve Burger’s equation

using 1st-order Godunov
method.

Usage:

> gcc —O burger.c —o burger
> ./burger

Output: two-column ascii data files

“data.nnnn.out”

Q{C:\cygwin\home\Andrea\Presentations\Copenhagen.2013\Codes\Burger\burger.c—Notepad++ ‘:1 O] X
File Edit Search View Encoding Language Settings Macro Run Plugins Window ? X

o = oo@‘vo'qj ‘ ‘ﬂbﬂ|g§‘k"‘.‘;‘{“f E—]‘. ] ‘zavg@“{}
E advection.c 5 burger.cl

1 #include <stdio.h> w

2 #include <stdarg.h>

3 #include <string.h> 1

4 #include <math.h> i

5 #include <stdlib.h>

6

7 double Initial Condition (double x);

8 void Integrate (double *u@, double *ul, double dtdx, int ibeg, int iend);

9

10 #define PI 3.14159265358979

11 #define NGHOST 2

12 #define NX 4000

13 [F REREREREEEREEORREORRE OO R R X

14 int main()

15 H/*

16 *

17 *

18 | *

19 T siokoR R R R OO K K R R R R R RO K K R R K R R KK K K K R R RO OK K K R R R ORI OK K K K R OR R OROKOKOK K OR R ORRORRORR R R */

20 B

21 int i, nstep, out_freq;

22 int ibeg, iend;

23 double xbeg, xend;

24 double x [NX + 2*NGHOST], dx;

25 double u@[NX + 2*NGHOST], ul[NX + 2*NGHOST];

26 double t, tstop, dt, cfl, dtdx;

27 double umax;

28

29 /* -- default values -- */ i
C source file length: 3495 lines: 171 Ln:1 Col:1 Sel:0 UNIX ANSI INS




VI. NONLINEAR SYSTEMS OF
CONSERVATION LAW




Nonlinear Systems

 Much of what is known about the numerical solution of hyperbolic
systems of nonlinear equations comes from the results obtained in
the linear case or simple nonlinear scalar equations.

* The key idea is to exploit the conservative form and assume the
system can be locally “frozen” at each grid interface.

* However, this still requires the solution of the Riemann problem,
which becomes increasingly difficult for complicated set of
hyperbolic P.D.E.



Euler Equations

e System of conservation laws describing conservation of mass,
momentum and energy:

dp B

En +V-(pv) =0 (mass)

0 (;fv) +V-|pvv+1Ip] =0 (momentum)
OF

iV B pV=0  (eneray)

° : - V2
Total energy density E is the sum of E = pe+ p—

thermal + Kinetic terms: 2

* Closure requires an Equation of State (EoS).

For an ideal gas one has pe = %



Euler Equations: Characteristic Structure

 The equations of gasdynamics can also be written in “quasi-linear”

or primitive form. In 1D:
/1[.,. 0 0 \
'A% v |
A0, A= 0 v, 1/p
ot O
\ 0 /)('f U, )

where V = [p,v,,p] is a vector of primitive variable, c. = (yp/p)*? is
the adiabatic speed of sound.

* Itis called “quasi-linear” since, differently from the linear case
where we had A=const , here A = A(V).



Euler Equations: Characteristic Structure

* The quasi-linear form can be used to find the eigenvector
decomposition of the matrix A:

1 1 1
r'=| —¢c/p |, =] 0], r=| c/p
c? 0 c

e Associated to the eigenvalues:

 These are the characteristic speeds of the system, i.e., the speeds
at which information propagates. They tell us a lot about the
structure of the solution.



Euler Equations: Riemann Problem

By looking at the expressions for the right eigenvectors,

1 1 1
d=| —esp | =] 0|, =] ap
c? 0 c?

we see that across waves 1 and 3, all variables jump. These are
nonlinear waves, either shocks or rarefactions waves.

Across wave 2, only density jumps. Velocity and pressure are
constant. This defines the contact discontinuity.

The characteristic curve associated with this linear wave is dx/dt =
u, and it is a straight line. Since v, is constant across this wave, the

flow is neither converging or diverging.



Euler Equations: Riemann Problem

The solution to the Riemann problem looks like

R T = ut
t | de = (vy — co)dt (contact)
(shock or rarefaction)

(L, vz, ")

dx = (vg + ¢;)dt
(shock or rarefaction)

(PL,UxLapL> (pR,U:URapR)

The outer waves can be either shocks or rarefactions.
The middle wave is always a contact discontinuity.

In total one has 4 unknowns: £7, Pr» Vs P, since only density jumps

across the contact discontinuity.



Euler Equations: Riemann Problem

 Depending on the initial discontinuity, a total of 4 patterns can

emerge from the solution:

pX

pX




Approximate Riemann Solvers

Assuming the system to be “frozen” at the local grid interface, one may apply
the concepts developed from linear system:

mn 1 T T "'n T ;
Fig1 = Z(F L+ ) — _Z RTAR - urt

Here /¥ and 7* are the left and right eigenvectors of the Euler equations, A is the
corresponding eigenvalue. This is known as the Roe Riemann solver.

A simpler approach that maximize the spectral radius of the Jacobian matrix can
be used. This requires only the maximum eigenvalue A*= |v| + c.. This yields the
Rusanov Lax-Friedrichs numerical flux:

|

F
9

(e

n n 1 [ TN
(F 1 - F ) 2|)\111a:x| i+1 = U; )

)

(Sl




Euler Equations: Shock Tube Problem

* The decay of the discontinuity defines what is usually called the “shock tube
problem”,

Density p
: 1 20f
1.2F 1 1sf
1.1 i €[
3 1.4 -
1.0 i
: 1.2
0.9f 1 1af
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
0.25F =
0.20F =
5 OE —
£ 5 =
T 040 =
0.05 =
0.00E . . . . 3
0,2 0,4 0.6 0.8
X




Code Example

= F I I e n am e : eu Ier.f [gf C:\cygwin\home\Andrea\Presentations\Copenhagen.2013\Codes\Euler\euler.f - Notepad++ = | [&] X

File Edit Search View Encoding Language Settings Macro Run Plugins Window ? X
. 0 L b, =l = A
° P I 1DE I ) t o3 S eS| & D | tg| 2 x| BEIET EBD|E REEav =gy
urpOSE: SO Ve u er S equa Ion Badvecuonc]Bburgerc =] euler.fl
1 B8 program euler i
1 st_ d 2
USI ng a 1 Or er 3 include 'common.h’ 3
4
. .
- 5 integer i, nt, nv
Lax-Friedrichs method.
7 real¥* u(nvar, nx),v(nvar, nx), flux(nvar, nx)
8 real* x(nx)
¢ Usag e: 9 real* t, dt, cmax, cfl, tstop
10 real* tfreq, df, dx
11
12 c ** generate grid **
13
> gfortran —O euler.f —o euler | cuucew
- 15 ibeg = nghost +
16 iend = nx - nghost
> .Jeuler 1
18 call init (v, x)
19 call primtocon (v, u, ibeg, iend)
20
21 dt =
. .o . 22 cfl =
* Qutput: 4-column ascii data files |~ -
24 t =
u“ ” 2
d ata N O ut 26 ¢ ** begin computation **
27
28 L do nt =1,
29 T o
Fortran source file length: 6022 lines: 271 Ln:1 Col:1 Sel:0 UNIX ANSI INS




Vil. RIEMANN SOLVERS AND MHD




The Riemann Problem

Riemann solvers generalize the concept of “upwind” to nonlinear
systems of hyperbolic PDE: the discretization is biased towards the

direction of propagation of waves.

The Riemann problem requires the solution of nonlinear systems
of equations.

Depending on the underlying system of PDE the solution may or
may not be feasible.



The Riemann Problem

In CFD, the solution to the Riemann problem depends on the
underlying system of conservation laws:

Density p

2.0F

1.1 - - Density B

0.9fF

0.2 0.4 0.6 0.8

0.25F

0.20F

o 0.15;—

= 0.10F

0.05
0.00E

0,2 0,4

Hydrodynamics (HD),

0,2 0,4 0,6 0.8

3 waves x

Magnetohydrodynamics (MHD),
7 waves




Riemann Problem in MHD/Relativistic MHD

t

slow [S/R] A entropy  sjow [S/R]

Alfven Alfven

fast [S/R]
Fast [S/R]

U,, left state Ug, right state

7 wave pattern, A" (U(LH) - U?) =F (U(LR)> - F (Ug))
across the contact wave, for B =0, only density has a jump;
across Alfven waves, [p] = [pgas]=0 but normal velocity [v,]= 0
—>magnetic field circularly / elliptically polarized.



Solving the Riemann Problem

The full analytical solution to the Riemann problem for the Euler
equation can be found, but this is a rather complicated task (see
the book by Toro).

In general, approximate methods of solution are preferred.

The advantage of using approximate solvers is the reduced
computational costs and the ease of implementation.

The degree of approximation reflects on the ability to “capture”
and spread discontinuities over few or more computational zones.



Solving the Riemann Problem

* Exact Riemann solvers (nonlinear)
— Full nonlinear solution:

— Expensive / impracticable for heavily usage in upwind codes;

* Linearized Riemann solvers (Roe type)
— require characteristic decomposition in eigenvectors
— may be prone to numerical pathologies

 HLL-type Riemann solvers (guess-based)

— based on guess to the signal speeds and on the integral average of the
solution over the Riemann Fan;

— fewer waves are considered in the solution;
— preserve positivity;




Resolution of Contact Discontinuities

Time: 10.00, 100 zones, HLL Riemann Solver

2.2(
2_0;||no-lo-o-o---n-mn-nmm,sl .
[ * ]
- » .
1.8 * -
[ * ]
1.6 x .
[ * ]
= » 4
1.4~ » ]
N ¥ ]
1.2 ¥ —
i = i
C . i
I.O_— 'suunmm?
0.8L 1 1 1 1 ]
Q.0 0.2 0.4 0.6 0.8 1.0
Time: 10.00, 1000 zanes, HLL Riemann Salver Time: 10.00, 100 zones, Roe Riemann Solver
20— T "~ T T T T ] Qqr— T —— T T
Q-U:ﬁ —: 2.0 |meraemeHEHRN DD DD DD —
B -4 i [
1.8~ § 1 1.8[f =
[ * i [ i
L o - B i
1.6 x 7 tef .
B Ed J B
L E J B
1.4 - - 1.4~ -
5 £ . -
B - i [
1.2_— X - I.2_— —
1.0F ; 1.0 - DHIN DN DN T DD IO NG ID DTN
0.8 ] 1 1 1 0.8 ] 1 ] L

0.0 0.2 0.4 0.6 0.8 1.0 Q.0 0.2 0.4 0.6 0.8 1.0



A 2D Example: Axisymmetric PWN

Pseudocolor
Var: rtho
— 1.00e+02

—5.62e-01
3.16e-03

L1 78e-05

— 1.00e-07
Max: 5.78e+00
Min: 2.99e-09

HLLC

Time=325 (x 2 yrs)

HLL

Pseudocolor
Var: rho
— 1.00e+02

—5.62e-01
3.16e-03

B 1.78¢-05

— 1.00e-07
Max: 7.81e+00
Min: 3.32e-08




Vill. HIGH-ORDER FINITE VOLUME
METHODS




Numerical Diffusion

 Upwind methods have a natural, built-in numerical dissipation.

* Adiscretized PDE gives the exact solution to an equivalent
equation with a diffusion term;

. oU oU
* Consider T a% =0, a>0
grtt—-ur UM -UM
— Use upwind discretization: . L+ g— =1 —

At Ax

1
— Use Taylor expansion on U,L-nJr and ng_l
— The solution to the discretized equation satisfies exactly
oU oU  alAx At\ 0°U
— t+a=— = l—a
ot ox 2 Ax ) 0x?
— This is an advection-diffusion equation.

+ H.O.T.




Numerical Diffusion

* Generally, the amount of numerical diffusion is controlled by the
underlying grid resolution / numerical scheme:

— spatial reconstruction
— Riemann solver accuracy
— (marginally) time stepping

Time: 3.07, First order Time: 3.05, 2™ order (lim) Time: 3.15, PPM
2.2( T T T T T 22 T T T T T T T 22 T T T T
i 2.0:— m 5 2.0 C EESSSSSSSSS———— -
:_ " u ] :_ X ]
1 8 N L A |.8 K i
[ 3
1.6 - k 1.6
[ ! k L
1.4 5 L . 141 .
X 3 b N
1.2 e ] 1.2 1 -
[ [ 3
I,OJ L |.g: N—
0.8L 1 1 1 1 i 0.8L 1 1 1 1 0.8L 1 1 1 1
a.0 0.2 0.4 0.6 0.8 1.0 Q.0 0.2 0.4 0.6 a.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

* PROS: numerical diffusion has a stabilizing effect.

 CONS: suppress small scale effect, may prevent growth of
numerical instabilities when upwinding is not done correctly.



Improving spatial accuracy

* High order reconstruction can be carried inside each cell by
suitable oscillation-free polynomial interpolation:

Piecewise

constant

Piecewise . ™~ —

Linear \\/

(TVD) >

Piecewise =

Parabolic
(PPM, WENO) >




15t and 2" Order Reconstruction

Time: 3.05, First order

e 1St First-order reconstruction:
Viz) =1V,
0.8 1 1 1 1
Q.0 0.2 0.4 0.6 0.8 1.0

e For 2"-order we use linear Time: 3.02, 2™ order
reconstrution: '

oV
Viz)=V; + A—a:(x — ;)




Preventing Oscillations

A Time: 3.07, 2™ order

Ars,
_“~.,._ Ay,
’ g
Undesired new minimum T A
e Use slope limiters to avoid spurious Times 3,05, 2% order (im)
oscillations: vz = v+ Vo (x—u) | f

Az

w= OV, = lim (Ai—l/Qa Ai-|—1/2)

x if |z| <ly|,zy >0
minmod(x,y) =< vy if |y| <|z|,zy >0

O if zy<O 0.0 0.2 0.4 0.6 0.8 1.0




High Order Integration in Time

 Asimple and effective way to achieve 2nd or 3rd order accuracy in
time is to treat the PDE in semi-discrete form:

dq dq ~
-4 F _ 2 _ _ b F.
/<8t+v )dV—O — o= % dS

* Insuch a way the PDE becomes a regular ordinary differential
equation (ODE) in time;
n—+1
R(g1)=R = q"'—-q"= Rt

n

dg _
dat

e Standard integration based on predictor/corrector schemes can
then be used to solve ODEs.



Second-Order Runge-Kutta

Using the trapezoidal method, the solution of our ODE writes:

At ‘
qn+1 _ (—In i 7(Fin 4+ Rn+1) 1+ O(At3)

the unknown @' appears on both side of the equation: use an

estimate (predictor) for R"™' with Euler method:

g = q"+AtR"+ O(At?)

At ‘
(—In—i—l _ (_]n‘|-7(Rn—|-R*> —|—O(At3)

This is the second-order explicit Runge-Kutta method (or Heun’s
method) It is 2nd order accurate.



The Reconstruct-Solve-Update Algorithm

Start from volume-averages

()

7

A

Reconstruct interface values from
zone averages using a high-order \

non-oscillatory polynomial:
UL, = lim, -  Ui(z),
+5 T
U, = lim,_, +  Uigi(z),
i+12
Solve Riemann problems between
adjacent, discontinuous states.
- Compute interface flux.

Update conserved variables with
time stepping algorithm (e.g. RK2):




A “Pseudo-Code”...

for each dt {

Time Stepping:
begin loop on grid zones{
Data U
Reconstruction i+3,L
U i+3,R
Uiy1.r Riemann P
Solver n+3
Uiy 1 R 13
n+1 n At ~n+ 3 ~n+ 3
><U>7, — <U>z N A_x(FH‘% _Fz'_%
tend loop on grid zones )




IX. MULTIDIMENSIONAL ISSUES:
DIVERGENCE OF V:-B=0




Multi Dimensional Integration

* Integration in more than one dimensions can be achieved using
two distinct approaches:

— Dimensionally Split schemes: solve the PDE as a sequence of 1-D sub-
problems.

q* _ qn . Atﬁx(q") qn—|—1 _ q* . At[,y(q*)

— Dimensionally Unsplit schemes: solve the full problem in one step:

Q" =q" — AtL,(q") — AtL,(q")



V:B Condition

* Numerically, the solenoidal condition is fulfilled only at the truncation
level and non-solenoidal components may be generated during the
evolution:

pi t = 2,2; [none]

o; t = 2.3 [powell]

3,50 > 3,50

2,67 2 2,67

1.83 1 1.83

1,00 1,00

 Magnetic monopoles cause unphysical accelerations of the plasma in the
direction parallel to the field lines (BrackBill & Barnes 1980)



Cell Centered vs Staggered

V-B = 0 cannot be satisfied for any type of discretization;

Robustness of a method can be assessed on practical basis by extensive
numerical testing.

Cell Centered Methods: magnetic field treated as volume average over
the zone:

Projection method (BrackBill & Barnes, 1980)

Powell’s 8-wave formulation (Powell 1994, Powell et al. 1999)
Field CD (Toth 2000)

Divergence cleaning (Dedner 2002, Mignone et al. 2010)

Staggered (face-centered) methods:

— magnetic field has a staggered representation where field components live
on the face they are normal to (Evans & Hawley 1988, Balsara 2000, 2004).



1. Projection Method

Correct the magnetic field after the time step is completed;
Starting from B” we obtain B” which is not divergence-free.

Then, using Hodge-projection:  B* =V x 4 + V¢
Taking the divergence of both sides gives

V¢ =V.B*

which can be solved for the scalar function ¢.
The magnetic field is then corrected as B"*' = B* — V¢

Cons: requires the solution of a Poisson equation.



2. Powell’s Method (8 wave)

e Start from the primitive form of the MHD equations without
discarding the V-B term = quasi-conservative form

5,
(.—p + V- (pu) =0
dt
d(pu) B-B BB 1
, +V.|puu+ | p+ [-— |=——BV:.B
ot 20 Lo Lo
0B

?+V-(’uB—Bu_)=—uV-B
C

oE B-B 1 1
—+ V- |[|E+p+ u— —(u-BB|=——(wu-B)V-B
at 210 L0 L0



2. Powell’s Method (8 wave)

The non-conservative form is discretized by introducing an 8t
wave in the Riemann solver associated with jumps in the normal
component of magnetic field.

With the non-conservative formulation VB errors generated by
the numerical solution do not accumulate at a fixed grid point but,
rather, propagate together with the flow.

For many problems the 8-wave formulation works.

However, in problems containing strong shocks, the non-
conservative source terms can produce incorrect jump conditions
and consequently the scheme can produce incorrect results



3. Hyperbolic Divergence Cleaning

The divergence constraint is coupled to Faraday’s law by introducing a
new scalar field function ¢ (generalized Lagrangian multiplier).

The second and third Maxwell’s equations are thus replaced by

B V x (v xB), ﬁ—{—Vl// V x (v x B),

{T-B 0. {’D(t//)#—T-B 0.
ot ot

where @ is a linear differential operator.

An efficient method may be obtained by choosing D(y/) = ¢,%0u) + ¢, %
yielding a mixed hyperbolic/parabolic correction.

Direct manipulation leads to the telegraph equation:
0 1/ N C% N
otr ¢ ot

C,Z,A:p

—> errors are propagated to the domain at finite speed ¢, and damped at

the same time.



3. Hyperbolic Cleaning

* The resulting system is called the generalized Lagrange multiplier
(GLM-MHD) and includes 9 evolution equation:

ap o
W+V—(pv) 0.

()(pv,)+v. [/)WT_BBT+|<p+B_)

ot 2 0

§+ V.- (vB"'—BV') +Vy = 0.

. 2

£+V- E+p+B— v—(v-B)B| =0,
ot 2

N e cr

p

* Divergence errors propagate with speed ¢, even at stagnation
points where v = 0.



4. Constrained Transport

e Staggered magnetic field treated 0.
as an area-weighted average on o | B Q:
the zone face. 3
0+ ’Q:o
______________________ . Qm .
. . . bxmo- . z
* Thus, different magnetic field N L o
components live at different : [
location; — >

 Adiscrete version of Stoke’s theorem is used to update them:

0b db. 1
— El-dS, =0 — 4 HE-Al=0
/ (UZ‘ TV X ) 2d dt T Sy . ‘



4. Constrained Transport in 2D

* In 2D, the emf is placed at cell corners.

* The discrete Stoke’s theorem becomes
o v o
b.\'.n—}—l _gx,n A Qj-l-l/.'v’,/\’-i-1/2 _Qj+1/2,/\'—1/2 bx»—-— V.b »E—
j+1/2k = Pjtipe — BI Av
y 1
pltl g A Qiv120+172 — 25172, k+1)2 « b’ «
Gk+12 = O rp12 T AL Ax

* Itis easy to show that the numerical divergence of b defined by

b; 1/2.k "'.—1 2.k b'l"k 1/2 _bJ"k—l )
(V . b)]k = J+1/2. J /2, + J.k+1/2 Js /2

Ax Ay
does not change due to pertect cancellation of term to machine

accuracy (Toth, 2000).




Scheme Comparison

Field Loop advection

0.4F 1t 1F

0.2
~ 0.0
-0.2
-0.4

Rotated Shock Tube

1.6

8w

-0.5 0.0 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5 1.5

Blast Wave
p

B?/2 ov?/2 1.

0.4r
GLM
0.2
0.0f

-0.21

~0.4}

0.41

CT
0.21
0.0

_0.2 L

—0.4F}
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V:B Condition

Cell-Centered Staggered

Pros = keeps “native” code discretization | = keep V-B = 0 to machine accuracy

= better for I.C. and B.C. = elegant and consistent discretization
= easier to extend to AMR grids = lead to perfectly consistent, well
= Can be used in dimensionally split posed Riemann problems

schemes

Cons | = require monopole control algorithm | = tricky extension to AMR

= 8 wave / Projection: = more work on B.C. and |.C.
»Jump of B at face - Riemann = Require solution of multi D Riemann
problem problems (UCT, L. Del Zanna &

» Break conservation (?7?) Londrillo)




X. BEYOND IDEAL MHD




Beyond Ideal MHD

The range of validity of MHD can be extended by several means, at the
cost of introducing additional terms and more complex algorithms.

One will then have to deal with different time scales.

Example are:

— Dissipative effects (viscosity, Ohmic dissipation, thermal conduction, etc...)
- mixed hyperbolic / parabolic PDE.

— including generalized Ohm’s law (Hall-MHD, electron

pressure) = dispersive waves, non-homogenous PDE with stiff sources
(RMHD);

— Fluid-particles hybrid algorithms.



Diffusion Processes

Parabolic (diffusion) term describes transfer of momentum or

energy due to microscopical processes without requiring bulk

motion.

Examples: viscosity, magnetic resistivity, thermal conduction.

Op
ot

ot

Id(pv)
Ot
%+V-[(5+pt)'v— (v- B) B|

oB
E—VX(’UXB)

I(pXa)

ot

= TV (pv)

+ V- [[)’U’UT — BB"| + Vp,

+ V- (pXav)

0

V -7+ pg
V-llg=A+pv-g
—V x (nJ)

/-) *gct

* No upwinding is required since parabolic problems have infinite
propagation speed = central differences are OK!



Explicit Scheme for Parabolic PDE

However, explicit schemes subject to restrictive constraint:

oU 0°U

In 1-D with constantD: — = D—
ot Ox?

Using FTCS: UZH_l — Uln - C(Uln_ — QUn z—H)

Where C = DAt/Ax?is the (parabolic) CFL number

Stability demands C<% 2> At< Ax?/(2D)

This is quite restrictive !



Implicit Schemes for Parabolic PDE

Using a backward in time, centered in space (BTCS):

Ut = U+ CUI = 207 + U

has no stability limit (unconditionally stable !)

However, it leads to an implicit (linear) system:
A{ U }n+ I — {U } n A E Rf\ra? X 1'\'213

This is a global operation and thus not can not be efficiently
carried out on parallel domains.

Alternative = Accelerated explicit methods 2>



Accelerated Explicit Methods

e Divide each time step At in s sub-steps based on a polynomial
sequence and require stability at the end of a cycle of s substeps:

At
Super-step
=P —Pp — —>—>—>—§
o
Sub-steps

tq

OU n n+1 1 n __
= = —MU = U"' = E(I —1,M)U" = R;U

* |n practice we require the super-step to be as large as possible,
exploiting properties of orthogonal polynomial, Chebyshev (Super
Time Stepping [STS]) or Legendre (Runge-Kutta Legendre [RKL]).

 The scheme is still explicit !



Runge-Kutta-Legendre

RKL methods show better stability properties and are preferred over STS.

Choosing s sub-steps we can cover a time step equal to

s°+5—2

At < Atexp/ 2

where At is the standard explicit method time step.

The method is easily parallelizable.

Scaling on 2D blast wave:

Algorithm Ny | Execution Time [s]
Explicit 192 1m: 13s
RKL 192 28s
Explicit 384 18m : 32s
RKL 384 5m : 19s
Explicit 768 4h:21m : 15s
RKL 768 49m : 17s
Explicit 1536 | 3d :5h:13m: 10s
RKL 1536 10h : 4m : 55s

Temperature (k)
6.3e+03 3.3e+04 1.8e+05 9.4e+05 5.0e+06




Recommended Books

Eleuterio F. Toro CAMBRIDCE TE6S Comp utathnal

IN APPLIED

MATHEMATICS Gasdynamics

Finite-Volume
Methods for

Riemann Solvers Hyperbolic Problems
and Numerical

Methods for
Fluid Dynamic

A Practical Introduction

@ Springer
RANDALL J. LEVEQUE




Recommended Codes

PLUTOY? |

— a modular parallel code providing
a multi-physics as well as a multi-
algorithm framework for the
solution of mixed hyperbolic/
parabolic conservation laws in
astrophysics;

http://plutocode.ph.unito.it

(v. 4.3)

| i Applicazioni Kl Suggested Sites [ Web Slice Gallery (J Importati daIE ... & Zecchino D'oro ... 2% Impact factor | L...

[ Pluto - a modular co x

€« C i [ plutocode.ph.unito.it

Dty

PLUTO Ereny
DI TORINO
A modular code for computational astrophysics

What is PLUTO ?

Home

PLUTO is a freely-distributed software for the numerical solution of mixed hyperbolic/parabolic
systems of partial differential equations (conservation laws) targeting high Mach number flows in
astrophysical fluid dynamics. The code is designed with a modular and flexible structure whereby
different numerical algorithms can be separately combined to solve systems of conservation laws
using the finite volume or finite difference approach based on Godunov-type schemes

Download
Documentation

Galle
L Equations are discretized and solved on a structured mesh that can be either static or adaptive. For

the latter functionality, PLUTO relies on the Chombo library which provides a distributed infrastructure
for parallel calculations over block-structured, adaptively refined grids

Publications

The static grid version of PLUTO is entirely written in the C programming language while the adaptive
mesh refinement (AMR) interface requires also C++ and Fortran

PLUTO is a highly portable software and can run from a single workstation up to several thousands
processors using the Message Passing Interface (MPI) to achieve highly scalable parallel
performance.

The software is developed at the Dipartimento di Fisica, Torino University in a joint collaboration with
INAF_Osservatorio Astronomico di Torino and the SCAI Department of CINECA

Supported Physics Modules

The current version of PLUTO (4.0) allows to solve the following systems of fluid dynamics equations:

« Classical hydrodynamics (Euler equations)
« Magnetohydrodynamics (MHD)

« Special Relativistic hydrodynamics (RHD)
« Special Relativistic MHD

The computational mesh can be either Cartesian, cylindrical or spherical in either one, two or three
dimensions.

i SCA

Non-ideal dissipative processes may be included in the HD or MHD module, namely

« Viscosity (Navier-Stokes)

« Thermal condution (HD, MHD)
« Resistivity (MHD)

« Optically thin cooling

Mignone et al. ApJS (2007), 170, 228-242; 2Mignone et al, ApJ

S (2012), 198, 7



THE END




