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Outline
• Introduction 

• Short and easy (3h) 

• Setting the stage 
• Not too long and “straightforward” (4h) 

• Small scale dynamos  
• Long and difficult (6h) 

• Large-scale dynamos  
• Just a tad shorter and less difficult (4h) 

• Connections between the two 
• Short and controversial (2h) 

• Instability-driven dynamos 
• Short and seemingly easier, but actually really difficult (3h) 

• Collisionless plasma dynamo 
• Short and a bit crazy, also difficult (4h)
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What is dynamo theory about ?
• The origin, and sustainment, of magnetic fields in the universe 

• on the Earth, other planets and their satellites (“planetary magnetism”) 

• on the Sun and other stars (“stellar magnetism”) 

• in galaxies, clusters and the early universe (“cosmic magnetism”) 

• Understanding their structural, statistical, and dynamical properties 

• Addressing important physics (and maths) problems 
• Deep connections with hydrodynamic turbulence and more generally                  

turbulent transport problems 

• Coming up with “useful stuff” for experimentalists and observers 
• Warning: people have strong disagreements on the definition of “useful stuff”
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The fluid/plasma dynamo conundrum 
• Most astrophysical bodies, and many planetary interiors, are  

• in an electrically conducting fluid (MHD) or weakly-collisional plasma state  

• in a turbulent state 

• (differentially) rotating: shearing, Coriolis and precessing effects 

• Main questions 
• Can flows of electrically conducting fluid/plasma amplify magnetic fields ? 

• What are at the time and spatial scales on which this happens ? 

• At what amplitude do they saturate ? What field structure is produced ? 

• A complex and multifaceted problem 
• Requires observations, phenomenology, theory, numerics and experiments
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A touch of history
• Self-exciting fluid dynamos are now a century-old idea 

• First invoked by Larmor in 1919 (sunspot magnetism)  

• The idea took a lot of time to gain ground 
• Cowling’s antidynamo theorem (1933) 
• First examples in the 1950s (e.g. Herzenberg dynamo) 
• Parker’s solar dynamo phenomenology (1955)  

• Golden age of mathematical theory 
• Alpha effect / mean-field: Steenbeck, Krause, Raedler 1966, Moffatt, Roberts etc. (1970s) 
• Small-scale dynamo theory: Kazantsev 1967, Kraichnan, Zel’dovich et al. (70s-80s) 

• Numerical and experimental era 
• Numerical evidence of turbulent dynamos: Meneguzzi et al. 1981, flourishing since then 
• Experimental evidence: Riga, Karlsruhe (~2000), VKS (2007), plasma underway (2005+) 
• Great observational radio and spectro-polarimetric prospects too (stellar, galactic, cosmo)
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Solar magnetism

 7 [Credits: Hinode/JAXA]

[Credits: SOHO/NASA]

Global solar cycle dynamics 
~ 1G-a few kG (sunspots)

Small-scale surface dynamics 
~ up to kG
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Planetary magnetism
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[HST/NASA][Swarm/ESA]

Earth’s magnetic field (2014) ~ 10-50 G Jupiter Auroras
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Galactic magnetism

 9 [Beck et al. VLA/Effelsberg]

M51 magnetic field

[Planck/ESA]

Galactic magnetic field ~ 10 μG



Galaxy clusters and cosmic magnetism
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Primordial  
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[Durrer & Neronov, A&A Rev. 2013]

ICM fields ~10 μG
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Takeaway phenomenological points
• Many astrophysical objects have global, ordered fields 

• Differential rotation, global symmetries and geometry important 

• Coherent structures and MHD instabilities may also be very important 

• Motivation for the development of “large-scale” dynamo theories 

• Lots of “small-scale”, random fields also discovered from the 70s 
• These come hand in hand with global magnetism 

• Simultaneous development of “small-scale dynamo” theory  

• Astrophysical magnetism is in a nonlinear, saturated state  
• Linear theory likely not the whole story (or requires non-trivial justification) 

• Multiple scale interactions expected to be important
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Mathematical formulation
• Compressible, viscous, resistive MHD equations
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Magnetic field energetics
• Magnetic energy equation 

• Magnetic field is generated at the expense of kinetic energy 

• Simple but enlightening local equation (ideal MHD)
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Conservation laws in ideal MHD
• Alfvén’s theorem(s) 

• Magnetic field lines are “frozen into” the fluid  just as material lines 

• Magnetic flux through material surfaces is conserved 

• Magnetic helicity                              conservation 
• A measure of magnetic linkage / knottedness
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Simple MHD system for dynamo theory
• Incompressible, resistive, viscous MHD 

• Captures a great deal of the dynamo problem 

• Often paired with simple periodic boundary conditions 
• Problematic in some cases (more later)
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Scales and dimensionless numbers
• System/integral scale  ℓ0, U0 
• Fluid system with two dissipation channels 

• Dimensionless numbers: 

• Kolmogorov viscous scale  ℓν  ~ Re-3/4  ℓ0 , uν  ~ Re-1/4  U0 

• Magnetic resistive scale  ℓη  (Pm-dependent) 

• Another important dimensionless quantity 

• Eddy turnover time 𝜏NL ~ ℓu/u 

• Flow/eddy correlation time 𝜏c
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The magnetic Prandtl number landscape
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Large magnetic Prandtl numbers 
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• Pm > 1: resistive cut-off scale is smaller than viscous scale 
• In Kolmogorov turbulence, rate of strain goes as ℓ-2/3 

• Viscous eddies are the fastest at stretching B: uν / ℓν ~ Re1/2  U0 / ℓ0 

• To estimate the resistive scale ℓη, balance stretching by these                             
eddies ~ uν/ℓν with ohmic diffusion rate η/ℓη2
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Low magnetic Prandtl numbers
• Pm < 1: resistive cut-off falls in the turbulent inertial range 

• To estimate the resistive scale ℓη, balance magnetic stretching by the          
eddies at the same scale ~ uη/ℓη, with diffusion η/ℓη2  

• i.e., Rm (ℓη) = u(ℓη) ℓη / η ~ 1 
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Dynamo fundamentals
• The problem of exciting a dynamo is an instability problem 

• Growth requires stretching to overcome diffusion (measured by                    )  

• Kinematic dynamo problem: 
• Find exponentially growing solutions of the linear induction equation                      

(velocity field is prescribed) 

• Dynamical problem considers effects of Lorentz force on  
• Saturated state of kinematic dynamos: non-linear magnetic back reaction 

• Subcritical scenarios: e.g. joint excitation of u and B via MHD instabilities 

• Slow vs Fast 
• A dynamo is slow/fast if its growth rate does/doesn’t vanish as 
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Cowling’s antidynamo theorem
• Axisymmetric dynamo action is impossible [Cowling, MNRAS, 1933] 

• In polar geometry, write 

•   

•   

• Poloidal flow can only redistribute flux so    must decay ultimately 

• As     decays, so must the toroidal field 

• Note: only applies if u and B share the same symmetry axis
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Antidynamo theorems and their implications

• Many other antidynamo results can be proven 

• Plane two-dimensional motions cannot sustain a dynamo                                        
[Zel’dovich’s theorem, JETP 1957] 

• A purely toroidal flow cannot sustain a dynamo 

•                  cannot be a dynamo field 

• Dynamos are only possible in “complex” geometries or flows 

• An extra burden for both theory and numerics 

• A popular “minimal” configuration is 2.5D (or 2D-3C) 

•              with all three components non-vanishing 

•
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The fast dynamo paradigm
• Chaotic stretching, twisting, folding and merging of field lines 

• For small diffusion, field doubles at each “iteration” (characteristic time) 
• Exponential growth with “ideal” growth rate                  ~ stretching rate

 24
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Fold

Merge 
(requires a tiny bit  

of magnetic diffusion !)

�1 = ln 2

[adapted from  Brandenburg &  
Subramanian, Phys. Rep. 2005]

[Vainshtein & Zel’dovich, SPU, 1972]

3D essential ! Lyapunov exponents of  
Galloway-Proctor flow  
[credits F. Cattaneo]
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Numerical evidence

• Homogeneous, isotropic, non-helical, incompressible, 3D 
turbulent flow of conducting fluid is a small-scale dynamo

 26

64x64x64 spectral DNS simulations at Pm=1 

[Meneguzzi, Frisch, Pouquet, PRL, 1981]
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Zel’dovich-Moffatt-Saffman phenomenology
• Consider incompressible, kinematic dynamo problem  

• Assume that  
• has finite total, energy, no singularity 

•   

• Take simplest possible model of time-evolving “smooth” velocity field 

• Random linear shear:
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Stretching and squeezing
• Evolution of vector connecting 2 fluid particles: 

• Consider constant 
• Exponential stretching along first axis 

• In ideal MHD, we thus expect 
• However, perpendicular squeezing implies that even a tiny magnetic 

diffusion matters…is growth still possible in that case ?
 28
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Magnetic field evolution
• Decompose   

• Diffusive part of evolution ~ 
• super-exponential decay of most Fourier modes because 

• survivors live in an exponentially narrow cone of modes such that                                  

• rope case:
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Magnetic field evolution (ropes)
• Surviving modes at time t have an initial field 

•   

• This field is stretched along the first axis, so 

• Now, estimate the magnetic field in physical space
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Magnetic energy evolution (ropes)
• What about magnetic energy ? 

• Similar conclusions apply in the pancake case, but 
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Generalization to random, time-dependent shear

• Renovate shear flow every time-interval 𝜏 

• Succession of random area-preserving stretches and squeezes 

• Introduce the matrix                          such that  

• Volterra multiplicative integral form: 

• Formal solution 

• Hard work: calculate the properties of the multiplicative integral !
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Lyapunov basis of random shear flow
• Zel’dovich showed that the cumulative effects of any random 

sequence of shears can be reduced to diagonal form 
• In particular there is always a net positive “stretching” Lyapunov exponent 

• The underlying Lyapunov basis  
• is a function of the full random sequence, but is independent of time 

• “cristallizes” exponentially fast in time (exponents converge as 1/t) 

• The problem reduces to that described earlier 
• Magnetic energy growth is possible in a smooth, 3D chaotic velocity field               

in the presence of magnetic diffusion
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Small-scale dynamo fields at Pm ≥ 1
• Pm=Rm=1250, Re=1 [from Schekochihin et al., ApJ 2004] 

• Folded field structure  
• Reversals at resistive scale 

• Folds coherent over flow scale 

• Field strength and curvature anticorrelated

 34
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• Yes, but much harder 
• Critical Rm~200 

• More complicated than                 
Zel’dovich picture

Small-scale dynamo at low Pm

 35

Pm=0.07, Re=6200, Rm=430

Pm=1, Re=440, Rm=440

Pm=1250, Re=1, Rm=1250

[Iskakov et al., PRL 2007]
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Introduction to Kazantsev-Kraichnan
• Consider again the following kinematic dynamo problem: 

• This problem can be solved analytically if u is 
• a random Gaussian process with no memory (zero-correlation time) 

• The so-called Kraichnan ensemble 

• Obviously, not your usual turbulent flow, but still… 
• Very useful to understand some properties of small-scale dynamo modes 

• Originally solved by Kazantsev [JETP, 1968]                                                            
[and further explored by Zel’dovich, Ruzmaikin, Sokoloff, Vainshtein,                                                  
Kitchatinov, Vergassola, Vincenzi, Subramanian, Boldyrev, Schekochihin etc.]
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Basic assumptions on the velocity
• 3D, statistically steady, homogeneous  

• Gaussian 
• pdf 

• Covariance matrix  

• Vanishing correlation time: 

• Isotropic and non-helical: 

• Incompressible:
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Equation for the magnetic correlation
• Goal: derive a closed equation for the two-point, single time 

magnetic correlator [or magnetic energy spectrum] 

• Induction equation at (x,t) and (x’,t) gives
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Closure procedure in a nutshell
• Velocity field is Gaussian, so we can use the Furutsu-Novikov                

formula [Gaussian integration by parts] 

• Reduction into integrals of products of second order moments only, e.g. 

• The time integral can be done thanks to vanishing correlation                   
time assumption 

• Functional derivatives are computed from formal solutions of the           
induction equation, e.g. 

• The space integrals become easy, as the functional derivatives               
introduce               and                                       
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The closed equation
• Using the appropriate projection operators, the problem       

reduces to a closed equation for the scalar function 

• Schrödinger equation with imaginary time 
•  Change variables: 

• Wave function of quantum particle of variable                     in potential
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Solutions

• Look for solutions of the form 
• Growing dynamo modes correspond to discrete bound states: E<0 

• To determine whether dynamo takes place, we can equivalently solve  

• The ground state describes the long-time asymptotics

 41

(r) = 2⌘ + L(0)� L(r)

V (r) =
2

r2
(r)� 1

2
00(r)� 2

r
0(r)� 0(r)2

4(r)

 =  E(r)e
�Et

Ve↵(r) = V (r)/(r) 00
E + [E � Ve↵(r)] E = 0

@ 

@t
=

 00

2m(r)
� V (r) 

m(r) = [2(r)]�1



Les Houches, May 2019

Different regimes
• Recall                             

•  So                                              is a turbulent diffusivity  

• Consider the scaling law   
• Smooth flow:                                         [“large Pm”] 

• “Kolmogorov” turbulence:                                                            [“low Pm”] 

• Potential as a function of 
•    
•       

• Growing bound modes for           
• includes both Pm >> 1 and Pm << 1  [“K41”] regimes
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A few important results at large Pm
• Consider the so called Batchelor regime 

• The magnetic field is stretched and transported by a viscous flow 

• The velocity field is smooth: 

• Spectral view at scales much smaller than the viscous scale 
• Work under Kazantsev-Kraichnan assumptions 

• Fokker-Planck type equation for the magnetic spectrum M(k) 

• Typical growth rate of the order of the shearing rate at viscous scales
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Diffusion-free regime
• Magnetic diffusion negligible if magnetic field only has 

• If we excite a given k0 initially, the spectrum spreads towards small-scales  

• The energy of each mode grows at rate           

• Total energy grows at rate      as the number of excited mode also grows 

• The magnetic field develops the so-called         Kazantsev spectrum 

 44

k ⌧ k⌘

k3/2
E(k)

k

M(k)

k⌘k⌫

Stirring

2�

3�/4

k3/2

M(k, t) / e3/4�t
✓

k

k0

◆3/2 r 5

4⇡�t
exp


�5 ln2 (k/k0)

4�t

�



Les Houches, May 2019

Resistive regime
• After the spectrums hits           , the long-time asymptotics is 

• The spectrum peaks at the resistive scale [falls off exponentially beyond] 

• The asymptotic total energy growth rate is now also approximately                                          
[weak dependence on boundary condition at small k]
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Magnetic pdf in the diffusion-free regime
• One can derive a Fokker-Planck equation for the pdf of B 

• Simplifies in the isotropic case as 1D diffusion equation with drift  

• Lognormal solution 

• The magnetic field is strongly intermittent 

• Magnetic moments grow as
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Saturation of small-scale dynamo
• As B gets large-enough, Lorentz force saturates dynamo 

• What is “large-enough “? 

• How does it work ? 

• Historical ideas 
• Batchelor argument [PRSL,1950]:  

• magnetic field is similar to hydrodynamic vorticity 

• should peak at viscous scale, hence saturation for  

• Schlüter-Biermann argument [Z. Naturforsch.,1950]:  

• equipartition at all scales
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Saturation phenomenology
• Geometric structure and orientation of the field matters 

• Magnetic tension                encodes magnetic curvature 

• Reduction of stretching Lyapunov exponents 

• A field realization can only saturate itself 

• Saturation at low Pm  
• Pretty much Terra incognita (almost no published simulation)
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Large Pm phenomenology
• Plausible (but not definitive) scenario from simulations                                                     

[Schekochihin et al., ApJ 2002, 2004] 

• Lorentz force first suppresses stretching at viscous scales 

• From there, slower, larger-scale eddies take over stretching 

• B keeps growing and acts on increasingly more energetic eddies… 

• Secular growth regime: 

• Final state:                        after “suppression” of full inertial range 

• “Isotropic MHD turbulence”, folded structure is preserved 

• P[B] not log-normal anymore (likely exponential)
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What about reconnection ?
• New challenges… 

• More in upcoming MHD turbulence JPP review by A. Schekochihin
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Figure 23. 2D snapshots of |u| (left) and |B| (right) in a nonlinear simulation of small-scale
dynamo driven by turbulence forced at the box scale at Re = 290 Rm = 2900, Pm = 10
(the magnetic energy spectra for this 5123 spectral simulation suggest that it is reasonably well
resolved). At such large Rm, the dynamo fied becomes weakly supercritical to a secondary
fast-reconnection instability in regions of reversing field polarities associated with strong
electrical currents. The instability generates magnetic plasmoids and outflows, leaving a
small-scale dynamical imprint on the velocity field (unpublished figure courtesy of A. Iskakov
and A. Schekochihin).

3.5.4. Reconnecting dynamo fields

Another potentially very important problem in the nonlinear regime is that of the
stability of small-scale dynamo fields (in particular magnetic folds at large Pm) to
fast MHD reconnection for Lundquist numbers Lu = UAL/⌘ (or equivalently Rm in
the nonlinear regime) of the order of a few thousands. This regime has only become
accessible to numerical simulations in the last few years, but plasmoids chains typical
of this process (Loureiro et al. 2007, 2012) have now been observed in di↵erent high-
resolution simulations of small-scale dynamos by Andrey Beresnyak and by Alexei Iskakov
and Alexander Schekochihin (Fig. 23), as well as in simulations of MHD turbulence
driven by the magnetorotational instability (Kadowaki et al. 2018). The relevance and
implications of fast, stochastic reconnection processes for the saturation of dynamos in
general, and the small-scale dynamo in particular, are currently not well understood,
although there is some nascent theoretical activity on the problem (Eyink, Lazarian &
Vishniac 2011; Eyink 2011). A tentative phenomenological model of the reconnecting
small-scale dynamo, inspired by similar results on MHD turbulence in a guide field, is
due in an upcoming review by Schekochihin (2019).

3.5.5. Nonlinear extensions of the Kazantsev model*

Let us finally quickly review a few nonlinear extensions of the Kazantsev model that
readers begging for more quantitative mathematical derivations may enjoy exploring
further. The general idea of these models is to solve equation (3.25) for the magnetic
correlator for a dynamical velocity field consisting of the original stochastic kinematic
Kazantsev-Kraichnan field, plus a nonlinear magnetic-field-dependent dynamical correc-
tion uNL accounting for the e↵ect of the Lorentz force on the flow. By massaging the
new unclosed mixed correlators associated with uNL in equation (3.25), one picks up new
quasilinear or nonlinear terms in Kazantsev’s equation (3.29). Stationary solutions of
this modified equation for the saturated magnetic correlator are then sought. Of course,
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Differential rotation: the Omega effect
• Shearing of magnetic field by differential rotation (shear) 

• In polar geometry, consider the initial axisymmetric configuration 

• a purely poloidal magnetic field: 

• a toroidal, shearing velocity field (differential rotation):                                   

• On short times,       can grow linearly in time 

• Ultimately, diffusion always dominates 

• This effect alone cannot produce a dynamo (Cowling) 
• But it can transiently make strong toroidal field out of weak poloidal field
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Turbulence: Parker’s mechanism
• Effect of a localized cyclonic swirl on a straight magnetic field 

• In polar geometry, this mechanism can produce axisymmetric poloidal field out                 
of axisymmetric toroidal field — and the converse 

• Kinetic helicity in the swirl is essential   

• This “alpha effect” can mediate statistical dynamo action 
• Ensemble of turbulent helical swirls should have a net effect of this kind 

• Cowling’s theorem does not apply as each swirl is localized (“non-axisymmetric”)
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[Parker, ApJ 1955] [Moffatt, Les Houches lectures 1973]
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Numerical evidence
• Small-scale helical turbulence can generate large-scale field 

• Critical Rm is O(1), lower than that of the small-scale dynamo 

• Helicity seemingly key for large-scale dynamos (but see later)
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[Meneguzzi et al., PRL 1981 — again !]
[Brandenburg, ApJ 2001]
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Twisting and magnetic helicity

• Assume conservation of magnetic helicity (up to resistive effects) 
• Systematic twisting produces  

• negative large-scale magnetic helicity (large-scale writhe)  
• positive small-scale magnetic helicity (small-scale twist) 

• Consequences  
• Interpretation of large-scale helical dynamo as “inverse transfer” of helicity 
• Transfer of helicity at small scales
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[adapted from Mininni, ARFM 2011]
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Mean-field approach
• Incompressible, kinematic problem with uniform diffusivity 

• Split fields into large-scale              and fluctuating part 

• To determine the evolution of     we need to know 
• We cannot just sweep fluctuations under the rug: closure problem
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Mean-field approach

• Assume linear relation between     and      
• Expand 

• Simplest pseudo-isotropic case:                    ,                        

• For          , we obtain a closed “    “ dynamo equation 

• Exponentially growing solutions with real eigenvalues 

• Max growth rate                               at scale
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Mean-field dynamo with Omega effect
• Add large-scale differential rotation to MF equation:  

• Growing, oscillatory solutions leading to field reversals: Parker waves 

• This is called the         dynamo (         if     acts both ways)  

• Remarks 
• Many other couplings possible: pumping effects, non-diagonal terms etc. 

• 3Dness of the dynamo is hidden in mean-field coefficients
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Calculation of mean-field coefficients
• We only know how to calculate     and     perturbatively for 

• small correlation times (low Strouhal number             , random waves) 

• low magnetic Reynolds number 

• In both cases we can justify neglecting the tricky term 
• First Order Smoothing Approximation (FOSA, SOCA, Born, quasilinear…)
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Calculation of mean-field coefficients
• Let’s see how the calculation proceeds for 

• Neglecting the tricky term and assuming small resistivity,  

• For slowly varying      and short-correlated velocities, this simplifies as 

• The role of kinetic helicity is explicit  

• At low Rm, we have the similar result
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Dynamical regime of large-scale dynamos

• When B gets “large enough”, the Lorentz force back-reacts 
• Big questions: what happens then, and what is “large-enough” ? 

• Equipartition argument: saturation when                          , but 

•     and     have very different scales 

• Large-scale dynamos alone produce plenty of small-scale field 

• Equipartition of small-scale fields:             , with   
• Not very astro-friendly:                                       for p=O(1) 

• Possibility of “catastrophic” alpha quenching
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The quenching issue
• Physical origin of quenching debated: 

• Magnetized fluid has “memory”: possible drastic reduction of statistical effects 
compared to random walk estimates [see review by Diamond et al., 2005] 

• Magnetic helicity conservation argument: 

• in “closed” systems, large-scale field can only reach equipartition                               
on slow, large-scale resistive timescales [e.g. Brandenburg, ApJ 2001] 

• Possible way out of problem is to ”evacuate” magnetic helicity                              
[Blackman & Field, ApJ 2000; see discussion by Brandenburg, Space Sci. Rev. (2009)] 

• Open boundary conditions (periodic b.c. not ok) 
• Internal fluxes of helicity [Kleeorin et al., Vishniac-Cho etc.] 

• Reconnection possibly key:  
• Topological  reconfiguration of full B (e.g. CMEs)
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Transitional (yet important) remarks 

• Historically, mean-field models have been at the core of modelling of 
• solar and stellar dynamos — “alpha” provided by cyclonic convection 
• galactic dynamos — “alpha” provided by supernova explosions 

• But classical mean-field theory faces strong limitations 

• Astro turbulence typically has                       and 

• “Co-existence” with fast, small-scale dynamo for    
• pain in the neck term exponentially growing…then what ? 
• linear relation between     and      doubtful 

• Large-scale dynamos are “real” — independently of our limited theories 

• We have to think harder ! (and ask good questions to computers)
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Large-scale dynamos with Kasantsev
• Consider turbulence with net helicity 

• Add a mirror symmetry-breaking term to the correlators 

•             asymptotics of model gives mean-field       equation 

• Full calculation leads to coupled equations for       and
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Self-adjoint spinorial form

• Therefore, the generalized helical case can be diagonalized 

• Bound “small-scale” modes: 

• Free “mean-field” modes:

 66

A(r) =
p
2 [2⌘ + N (0)� N (r)]

B(r) =
p
2 [2⌘ + L(0)� L(r)]

C(r) =
p
2 [g(0)� g(r)] r
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Growing helical modes
• Helicity allows growing large-scale                                                         

modes 

•   

• Bound modes (         ) dominate the                                                        
kinematic stage 

• As               , their spectrum peak shifts                                                        
towards that of “mean-field” modes 

• Further hints that quantitative large-scale dynamo theory             
should factor in the small-scale dynamo
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• Large-scale dynamos at largish Rm now 
observed numerically 

• Galloway-Proctor flow + Shear                                                                      
[Tobias & Cattaneo, Nature 2013] 

• “Suppression” principle: shear                                                                              
turns off small-scale dynamo 

• Turbulent convection + differential rotation                               
[Hotta et al., Science 2016] 

• Small-scale dynamo                                                                                                                                                                           
reduces turbulence 

• Asymptotic behaviour unclear 

• Dynamical theory still terra incognita 
• Boldyrev’s model of large Pm      dynamo [ApJ, 2001]

Order out of chaos ?
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One last (lack of) twist
• Large-scale dynamo action is possible without net helicity 

• The shear dynamo:                 + non-helical small-scale turbulence  

• Mean-field description in terms of “WxJ” effect [Kleeorin & Rogachevskii] 

• “Incoherent” alpha effect [Silant’ev 2007, Proctor 2007, Brandenburg 2008], etc. 

• Recent developments [Squire & Battacharjee, PRL 2015, 2016] 

• Saturated small-scale dynamo in a shear flow can lead to large-scale dynamo
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t

[Yousef et al., PRL 2008]

u = Sxey

hByixy (z, t)



More ways to make magnetic fields: 

MHD-instability-driven dynamos
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Instability-driven dynamos
• Many astrophysical systems 

• host differential rotation: i.e. there is a background shear flow 
• are prone to non-axisymmetric MHD instabilities 

• This can lead to specific nonlinear forms of dynamo action  
• Analogous to self-sustaining nonlinear process in hydro shear flows  
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[Rincon et al., PRL 2007; Astron. Nachr. 2008; Riols et al., JFM 2013]

Non-axisymmetric  
MHD instabilities (MRI, 

magnetic KH etc.)

Weak  axisymmetric 
poloidal magnetic 

field

Non-axisymmetric 
perturbations of u & B

Axisymmetric toroidal  
magnetic field

Omega effect

Nonlinear feedback 
(electromotive force) E = ũ⇥ B̃

• Tayler-Spruit dynamo [Spruit, A&A 2003] 

• MRI dynamo [e.g. Hawley et al., ApJ 1996] 
• Magnetic buoyancy driven dynamo             

[Cline et al., ApJ 2003] 
• “Magnetoshear"-instability driven dynamo 

[Miesch, ApJ 2007]



Les Houches, May 2019

Subcritical nature
• Such dynamos are subcritical / essentially nonlinear 

• “Egg and chicken” problem 

• Non-axisymmetric instability growth requires large-scale field 

• Large-scale field sustainment rests on non-axisymmetric instability  

• Non-axisymmetric    ,     jointly excited by instability: Lorentz force essential  

• Implications 
• No kinematic dynamo stage 

• Homoclinic/heteroclinic bifurcations 

• Nonlinear EMF/field relationship
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ũ B̃

[Riols et al., A&A 2013]
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“Solar-like” magnetic buoyancy dynamo
• Shear + Magnetic buoyancy + Kelvin-Helmholtz 

• Coherent, strongly chaotic dynamo action 

• Strongly nonlinear EMF / field relationship
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[Cline et al., ApJ 2003]
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MRI/accretion-disk dynamo
• Keplerian shear flow turbulence is thought to be MRI-driven 

• Possible even in the absence of net                                                                  
magnetic flux [Hawley et al., ApJ 1996] 

• Characterised by dynamical                                                    
reversals of large-scale field 
• Non-axisymmetric MRI of toroidal                                                                    

field critical (magnetic buoyancy) 
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[Herault et al., PRE 2011]

[Lesur & Ogilvie, A&A 2008][Davis et al., ApJ 2010]
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From subcritical to statistical
• Statistical theory relevant but difficult   

• Nonlinear EMF/field relationship 

• Mean-field approach controversial 

• MRI-dynamo “chimeras” 
• “Semi-statistical” solutions
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[Riols et al., A&A 2017]



Plasma dynamo
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What about weakly collisional plasmas ?
• Some high-energy astrophysical plasmas are not MHD fluids 

• Intracluster medium, hot accretion flows, primordial plasma (?) 

• What happens to dynamos ? 
• Implications for magnetogenesis 

• “Pathfinding” for experiments 

• Coupling of processes 
• Fluid: stirring, fluid instabilities                                                               

(convection, MRI etc.) 

• Kinetic: collisionless damping,                                                                                              
magnetization effects
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4 Fabian et al

Figure 3. Matching X-ray and optical images of the core of the Perseus cluster Left: Chandra composite (from Fig. 2, but without subtraction of the mean
at each radius); Right: optical from Blackbird Observatory (see text for details). The images are 11.8 arcmin from N to S. NGC 1272 is the bright elliptical
galaxy 5 arcmin WSW of NGC 1275.

Figure 4. Joint Chandra and XMM image.

and are trapped at some radius, in this case at about 220 kpc. Per-
haps they become neutrally buoyant there due to mixing with sur-
rounding gas, or the magnetic structure (possibly azimuthal there;
Quataert et al 2008) traps them. There also seems to be an overall
structure at and just within that radius to the W, possibly due to mo-
tion of the core relative to the outer cluster gas (see e.g. Churazov
et al 2003).

The two X-ray surface brightness dips to the SW of the trough
(Figs 9 and 10), which we identify as rising bubbles, have volumes
of approximately 104 kpc3 each, corresponding to about twice that
of the current inner bubbles.

The bay to the South may result from the accumulation of
Southward rising bubbles in analogy to the Northern trough. It has a
sharp, curved Northern edge and the interior is hotter than the outer
parts (Fig. 11). Perhaps there has been some mixing and heating
taking place between the relativistic and thermal intracluster gases.
It lies much closer to the nucleus of NGC1́275.

The evolution of rising bubbles in cluster gas has been stud-
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Figure 5. Surface brightness profile in the 0.5–7 keV band to the West of
the nucleus of NGC 1275.

ied and simulated by many authors (e.g. Diehl et al 2008; Liu et
al 2008). Bubbles blown by a jet are not Rayleigh-Taylor unsta-
ble because the upper surface of the bubble is not at rest relative
to the hot gas above them. The expansion of the bubbles means
that the hot gas continuously flows around them. The growth time
of the Kelvin-Helmholtz instability is comparable to the flow time.
Whether they break up or not depends on the amplitude and scale
of velocity perturbations in the hot gas. The stability of a large gas
bubble rising through liquid has been studied by Batchelor (1987).
Rising air bubbles in water can be surprisingly large. The scale size
of disruptive perturbations depends on surface tension (which in

c� 0000 RAS, MNRAS 000, 000–000

Lturb ~ 20 kpc

λe ~ 1 kpc (1016-17 km)

Pressure scale Height ~ 100 kpc  (1017-18 km)

Fabian et al., MNRAS 2011

Larmor radii ~ 104 km
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Pressure anisotropy generation
• In a magnetized, weakly collisional plasma 

• The pressure is an anisotropic tensor with respect to the direction of B 

•                               is almost conserved 

• Large-scale, field-stretching motions generate pressure anisotropy 
• Collisions tend to relax it
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•                      conservation implies kinetic instability everywhere 
• local increase of |B| —> increase of p⊥ 

• mirror instable  

• local decrease of |B| —> decrease of  p⊥ 

• firehose instable  

• Small, fast scales                    
• ICM: 𝝆i ~ 104 km, 𝛺i-1 ~ second 

• Nonlinear feedback on “fluid” scales
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µ = mv2
�/2B

p? � pk
p?

> 1/�

p? � pk
p?

< �2/�

Mirror
Firehose

Bale et al.,  
PRL 2009

Pressure anisotropy-driven instabilities

[Scheckochihin et al, ApJ 2005, Schekochihin et al., PRL 2008; 
Rosin et al., MNRAS 2011; Rincon et al., MNRAS 2015] 

Dynamo theories 125

�Bz/B0

�Bk/B0

�i < 0

�i > 0

1

B

DB

Dt
> 0

1

B

DB

Dt
< 0

Firehose

unstable

Mirror

unstable

Linear regime Nonlinear regime

in terms of the mean velocity of the ions ui and the current
density j [24,25]. This constitutes the “hybrid” description
of kinetic ions and fluid electrons [26,27].
Adiabatic invariance and pressure anisotropy.—The

final terms in Eqs. (1) and (2) represent the stretching of
the phase-space density and the magnetic field in the y
direction by the shear flow. Conservation of the first
adiabatic invariant μ≡miv2⊥=2B then renders fi aniso-
tropic with respect to the magnetic field. If E0 ¼ 0, the ratio
of the perpendicular and parallel pressures is

p⊥
p∥

≡
R
d3v μBfiR
d3vmiv2∥fi

¼
!
1 − 2

BxBy0

B2
0

Stþ B2
x

B2
0

ðStÞ2
"
3=2

;

(6)

where the subscript “0” denotes initial values [28].
Method of solution.—We solve Eqs. (1)–(5) using the

second-order–accurate particle-in-cell code PEGASUS [29].
We normalize magnetic field to B0, velocity to the initial
Alfvén speed vA0 ≡ B0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πmini0

p
, time to the inverse of

the initial ion gyrofrequency Ωi0 ≡ ZeB0=mic, and dis-
tance to the initial ion skin depth di0 ≡ vA0=Ωi0. The ion
Larmor radius ρi ¼ β1=2, where β≡ 8πniTi=B2. Np par-
ticles are drawn from a Maxwell distribution with β0 ¼ 200
and placed on a 2D grid Nx × Ny ¼ 11522 cells spanning
Lx × Ly ¼ 11522. The electrons are Maxwellian and
gyrotropic with Ti=ZTe ¼ 1. A δf method reduces the
impact of discrete-particle noise on the moments of fi
[30,31]. Orbital advection updates the particle positions
and magnetic field due to the background shear [32]. The
boundary conditions are shearing periodic: fðx; yÞ ¼
fðx % Lx; y∓ SLxtÞ. We scan S ¼ ð1; 3; 10; 30Þ × 10−4.
These parameters guarantee a healthy scale separation
between the grid scale, the ion Larmor radius, the wave-
lengths of the instabilities, and the box size. In what
follows, h · i denotes a spatial average over all cells.
Firehose instability.—We choose Np ¼ 1024NxNy and

set B0 ¼ ð2x̂þ 3ŷÞ=
ffiffiffiffiffi
13

p
, so that hByi ¼ hBxi at St ¼ 1=2.

As B decreases, adiabatic invariance drives p⊥=p∥ < 1
[Eq. (6)], with plasma becoming firehose unstable when
Λf ≡ 1 − p⊥=p∥ − 2=β∥ > 0. Exponentially growing,
Alfvénically polarized (jδB⊥j ≫ δB∥), oblique modes with
growth rate γ ≃ k ∥ρiðΛf=2Þ1=2 and k ∥ρi ≈ k ⊥ρi ≈ 0.4 then
appear [Fig. 1(a); cf. Refs. [33,34] ]. Figure 2 shows their
spatial structure. Λf continues to grow, driven by shear
[Λf ∼St; Fig. 1(b)], until the perturbations become large
enough to reduce the pressure anisotropy to its marginally
stable value (Λf → 0).
It has been proposed [24,35] that they do this by

canceling the rate of change of the mean field:
ð1=2ÞdhjδB⊥j2i=dt ≈ −d ln jhBij=dt∼S, giving rise to
secular evolution, hjδB⊥j2i∼St. Matching γ ∼Λ1=2

f ∼
ðStÞ1=2 with the rate of growth in the secular phase
(γ ∼1=t), we find hjδB⊥j2i∼St∼Λf ∼S2=3 at the tran-
sition from linear to nonlinear evolution (cf. Refs. [36,37];

“quasilinear saturation”). This scenario is indeed what we
observe: the evolution of hjδB⊥j2i and Λf is shown in
Fig. 1; note hΛfimax ∝S2=3 [inset in Fig. 1(b)]. To test the
idea [24,35] that, during the secular phase, the average B
seen by particles streaming along the field is constant,
we plot in Fig. 3 a representative particle’s μ and B
(evaluated at the particle’s position) for S ¼ 3 × 10−4.
During the secular phase, the particle nearly conserves μ
and B≃ const along its trajectory, as expected.
However, this secular growth is not sustainable: the

magnetic fluctuation energy saturates at a low level ∝S1=2
[inset of Fig. 1(a)] in a state of firehose turbulence. During
this saturated state, particles scatter off fluctuations with
k ∥ρi ∼1, μ conservation is broken, and B decreases at a rate

FIG. 1 (color online). Evolution of firehose instability. (a)
Energy in perpendicular magnetic fluctuations hjδB⊥j2i,
whose saturated value ∝S1=2 (inset). (b) Firehose stability
parameter hΛfi, whose maximum value ∝S2=3 (inset; see text
for explanation).

FIG. 2 (color online). Spatial structure of the firehose instability
with S ¼ 3 × 10−4. δBz=B0 (color) and magnetic-field lines are
shown in the linear (left) and saturated (right) regimes.
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approaching −d ln jhBij=dt ∼ S (Fig. 3). The production of
pressure anisotropy is no longer adiabatically tied to the
rate of change of the magnetic field and marginality
(Λf ≃ 0) is maintained independently of S via anomalous
particle scattering. We calculate the mean scattering rate
νscatt by tracking 4096 randomly selected particles, con-
structing a distribution of times taken by each to change its
μ by a factor of e, and taking the width of the resulting
exponential function to be ν−1scatt. In a collisional, incom-
pressible plasma without heat flows, the pressure
anisotropy would be p⊥=p∥ − 1 ¼ ð3=νÞðd ln jhBij=dtÞ,
where ν is the collision rate [24,38]. The effective scattering
rate needed to maintain Λf ¼ 0 at saturation would then be
νf ≡ −3ðβ∥;sat=2Þðd ln jhBij=dtÞsat ∼ Sβ. Remarkably, we
find νscatt ≃ νf in the saturated state (Fig. 4).
Mirror instability.—We choose Np ¼ 625NxNy and set

B0 ¼ ð2x̂ − ŷÞ=
ffiffiffi
5

p
, so that hBy i ¼ −hBx i at St ¼ 1=2.

As B increases, adiabatic invariance drives p⊥=p∥ > 1
[Eq. (6)], with plasma becoming mirror unstable when
Λm ≡ p⊥=p∥ − 1 − 1=β⊥ > 0 [39]. Near threshold, lin-
early growing perturbations have γ ∼ Λ2

m, k ∥ρ i ∼ Λm, and
k ⊥ρ i ∼ Λ1=2

m [40]—they grow slower than firehose modes,
are more elongated in the magnetic-field direction, and
have δB∥ ≫ jδB⊥j. Figure 5 shows their spatial structure.
The saturation scenario is analogous to the firehose: Λm

continues growing [Fig. 6(b)] until the mirror perturbations
are large enough to drive Λm → 0, at which point the

perturbations’ exponential growth gives way to secular
evolution with hδB2

∥i ∝t4=3 [Fig. 6(a), discussed below].
As Λm → 0, the dominant modes shift to longer wave-
lengths (k ∥ρ i ≪ 1) and become more elongated in the
mean-field direction. Excepting the (nonasymptotic)
S ¼ 10−3 case, this secular phase appears to be universal,
lasting until δB=B0 ∼ 1 at St≳1, independently of S. The
final saturation is caused by particle scattering off sharp
(δB=B0 ∼ 1, k ∥ρ i ∼ 1) bends in the magnetic field, which
occur at the boundaries of the magnetic mirrors.

FIG. 3. Evolution of μ and B for a representative particle in the
firehose simulation with S ¼ 3 × 10−4.

FIG. 6 (color online). Evolution of mirror instability versus S.
(a) Energy in parallel fluctuations of the magnetic field hδB2

∥i. (b)
Mirror stability parameter hΛmi, whose maximum value ∝S1=2.

FIG. 5 (color online). Spatial structure of the mirror instability
with S ¼ 3 × 10−4. δB∥=B0 and (last panel) rescaled δni=ni0 are
shown (color) with magnetic-field lines in the shearing plane.

FIG. 4 (color online). Mean scattering rate νscatt for (left) firehose
and (right) mirror instabilities in the secular (crosses) and saturated
(plus signs) phases versus Sβ0. The collision rates required to
maintain marginal stability in the saturated phase, νf and νm,
respectively, are shown for comparison. See text for definitions.
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Figure 46. Snapshots of 2D hybrid-PIC simulations of firehose and mirror instabilities in a
shearing, collisionless, weakly-magnetised plasma (�i = 200). Top panels: an initially straight
but inclined magnetic field B0 in the (x, y) plane (solid black lines) is “unsheared” by a large-scale
linear shear flow US = �Sx ey, resuting in a decrease of the magnetic-field strength and
generation of negative ion pressure anisotropy through µ-conservation. This preferentially excites
an oblique firehose instability characterised by out-of-plane, perpendicular magnetic fluctuations
�Bz. The left panel shows the linear stage of instability, and the right panel the saturated
stage involving finite-amplitude magnetic fluctuations at ⇢i scales. Bottom panels: in a second
numerical experiment, the initial inclination of the magnetic field in the (x, y) plane is set-up in
such a way that the shear winds up the field, resulting in an increase of magnetic-field strength
and generation of positive ion pressure anisotropy. This preferentially excites an oblique mirror
instability growing parallel magnetic-field fluctuations �Bk. The left panel shows the preferred
orientation of the instability in the linear stage. The nonlinear stage, depicted in the right panel,
consists of finite-amplitude, elongated mirror traps characterised by steep magnetic gradients at
⇢i scale at their ends (adapted from Kunz, Schekochihin & Stone 2014).

mirror instabilities developing on top a slowly-evolving background magnetic field driving
respectively a uniform negative or positive ion pressure anisotropy are shown in the left-
hand panels of Fig. 46.

6.4.3. Saturation of kinetic instabilities in a shearing magnetised plasma*

The theoretical analysis and numerical results presented so far show that slowly-
evolving, fluid-scale magnetic structures in a collisionless magnetised plasma, such as
the magnetic fold in Fig. 45, should become mirror or ion-cyclotron unstable in regions
of developing positive �i, and firehose unstable in regions of developing negative �i

(Schekochihin et al. 2005a). Besides, the fact that all these instabilities grow at a very
fast exponential pace compared to the fluid timescales over which pressure anisotropies
typically develop in a magnetised plasma implies that large-scale plasma motions can

[Kunz et al., PRL 2014]
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So what happens to dynamos ?
• The most efficient eddies are the smallest, fastest ones 

• In the ICM, such plasma motions are weakly collisional 

• Plasma is magnetised well below equipartition (ICM: ~10-18 G) 
• Field-stretching motions (= dynamo !) generate pressure anisotropy 

• Pressure-anisotropy driven instabilities !
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Collisionless plasma dynamo problem(s)
• Unmagnetized problem: 

• Is a collisionless, unmagnetized 3D chaotic flow of plasma a good dynamo ? 

• Magnetized problem: 
• How do pressure-anisotropy kinetic instabilities interfere with magnetic growth ? 

• Annoying “details” 
• Dynamo is a fundamentally 3D process in physical space (Cowling) 

• No rigid “guide” field here: kinetic description “3V” in velocity space 

• Modelling requires 3D-3V simulations (+time integration !) 
• Very costly: O(106-107 CPU hours) per simulation 

• Use simplest possible appropriate kinetic model: hybrid model w. fluid electrons
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⇢i/L > 1

⇢i/L < 1
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Unmagnetized regime
• Four simulations with same initial field and flow history, but 

different magnetic diffusivity 𝜂
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Unmagnetized regime: growing case
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Magnetized regime

 84
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Magnetized regime
• Firehose instability in strong-field curvature regions 

• Bubbly mirror fluctuations in field-stretching regions

 85
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The challenge of a transport theory

• Anisotropic, dynamically evolving fluid-scale transport 
• Magnetization impedes perpendicular streaming: less viscosity  

• Pressure anisotropy regulation by saturation of kinetic instabilities 

• Reduction of effective stretching rate: akin to more viscosity 

• Particle scattering off FLR-scale magnetic wiggles: less viscosity 

• Effective Re⟘(|B|), Re∥(|B|) and Pm ?  

• Effects on growth and saturation ? 

• Does this look like fluid MHD to you ?
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130 F. Rincon

longer integration times than can be afforded currently are re-
quired to investigate growth in this regime quantitatively.

Discussion
This paper offers a conclusive proof of principle demonstration
that turbulent collisionless plasma dynamo is possible. This effect
involves generic plasma processes independent of any particular
geometric configuration and may, thus, be realizable in “labo-
ratory astrophysics” plasma experiments, provided that they can
achieve sufficiently weak collisionality. Numerical evidence that
the dynamo becomes entangled with kinetic-scale dynamical phe-
nomena as the plasma self-magnetizes strongly suggests that future
models of weakly collisional, magnetized turbulence in high-energy
astrophysical plasmas should, at least, include an effective treatment
of such multiscale interactions. For now and while reconstructing
the detailed history of cosmological magnetic fields remains out of
reach observationally and computationally, our results provide a
firmer physical basis for the idea that extragalactic plasma turbu-
lence may significantly contribute to the amplification of seed cos-
mological fields up to dynamical levels on cosmologically short
times, despite such plasmas not being simple collisional MHD
fluids. The typical magnetic field amplification timescale in the
unmagnetized regime is an appreciable fraction of the eddy turn-
over time, and our results suggest that the dynamo self-accelerates
as magnetization takes place. In the turbulent intracluster medium,
where the turnover time is believed to be no longer than 107 y and
probably, is much shorter (17), such a dynamo could, therefore, in
principle bring magnetic fields from typical 10−21 − 10−9 G (at
most) seed field magnitudes (7, 8, 13, 14) to microgauss dynamical
levels in less than a Hubble time.
New supercomputing and experimental facilities should soon

make it possible to determine the parameter dependence and sat-
uration properties of this turbulent dynamo and further assess its
relevance to the coevolutions of cosmic magnetic fields and large-
scale accreting structures, which are also set to be thoroughly
investigated by next generation X-ray and radio observatories.

Materials and Methods
Hybrid Kinetic System. We consider a forced, nonrelativistic, quasineutral
hybrid Vlasov–Maxwell system describing the coupled evolution of colli-
sionless protons (mass mi and charge e), fluid, isothermal electrons of tem-
perature Te and negligible inertia, and electromagnetic fields Eðr, tÞ and
Bðr, tÞ (r and v are the spatial and velocity space coordinates, respectively).
The ion distribution function fiðr,v, tÞ is governed by the Vlasov equation:

∂fi
∂t

+v ·∇fi +
!
e
mi

"
E+

v×B
c

#
+

F
mi

$
·
∂fi
∂v

= 0,

where Fðr, tÞ is an external force described below. The ion number density is
niðr, tÞ=

R
fiðr,v, tÞ  d 3v, themean “fluid” ion velocity isuiðr, tÞ=

R
vfiðr,v, tÞd 3v=ni,

and the ion pressure tensor is Piðr, tÞ= mi
R
ðv−uiÞðv−uiÞfiðr,v, tÞd 3v. The

electron number density ne is equal to ni at all times by quasineutrality.
The magnetic field evolution is governed by Faraday’s equation,

∂B
∂t

=−c ∇×E,

and ∇ ·B= 0. The electric field is calculated from Ohm’s law,

E=−
Te∇ne

ene
−
ue ×B

c
+
4πη
c2

j,

where j= ðc=4πÞ ∇×B is the current density, ue =ui − j=ðeneÞ is the mean electron
velocity, and η is a uniform magnetic diffusivity. The equations are adimensional-
ized using the initially uniform ion density ni0 as a reference density, the ion inertial
length d i = c=ωpi as a length scale (ω2

pi = 4π  ni0   e2=mi), and d i=vthi as a timescale.
B is expressed in units of vthi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π  ni0  mi

p
, and E is in units of v2thi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π  ni0  mi

p
=c.

The adimensional magnetic energy density is the inverse of the plasma-β.

Numerics. The problem is solved numerically with a 3D–3V Eulerian Vlasov code
(31) parallelized on 1,024 cores. The resistive term in Ohm’s law is only included
in Faraday’s equation to ensure that dynamo modes are numerically resolved.

Stochastic Ion Momentum Forcing. An incompressible, nonhelical, Δ-correlated
in time vector force Fðr, tÞ injecting ion momentum with a prescribed sta-
tistical power density-e is included in the numerical formulation of the ion
Vlasov equation using a numerical technique borrowed from hydrody-
namics (32). Defining the correlation tensor of the spatial Fourier transform
of the force as

ÆFk ,iðtÞFk ,j* ðt′Þæ=χðkÞδðt − t′Þ
&
δij − kikj

'
k2(,

where brackets denote ensemble averaging, it can be shown analytically that
the (linear) response to this forcing in unmagnetized, collisionless regimes is
a time-dependent flow uðr, tÞ, with correlation tensor that is

Fig. 3. Evolution of (normalized) magnetic energy density in simulations with
increasing initial magnetization (decreasing β). (Inset) Magnetic energy growth
rate vs. β. L= 2,000  πd i, kf = 2π=L, e= 3×10−5   ni0miv3thi=d i, and η= 0.1  d i   vthi.

Fig. 4. 3D rendering of magnetic field lines subject to mirror and firehose
instabilities in the β=104 (ρi=L= 0.016) simulation (the red and blue color
scale encodes positive and negative ion pressure anisotropy-Δi clipped to ±1,
respectively). (Inset) Close-up view on field lines and scalar density fluctua-
tions in the central, mirror-unstable region [the red and blue color scale
encodes ðni −ni0Þ=ni0 clipped to ±1].

3952 | www.pnas.org/cgi/doi/10.1073/pnas.1525194113 Rincon et al.
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netic field B(t, r) are, respectively, the Vlasov equation
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where �rot = �rotẑ is the angular velocity at r0. The
x and y dimensions coincide locally with the radial and
azimuthal dimensions in the disk. The electric field in
the comoving frame
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c
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ceni
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+
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c2
j, (3)

is obtained by expanding the electron momentum equa-
tion in (me/mi)1/2, enforcing quasi-neutrality

ne = ni ⌘

Z
d3v fi, (4)

assuming isothermal electrons (Te = const.), and using
Ampére’s law to solve for the mean electron velocity

ue = ui �
j

eni

⌘
1

ni

Z
d3v vfi �

cr�B

4⇡eni

(5)

in terms of the mean ion velocity ui and the current den-
sity j [38, 39]. A resistivity ⌘ is included in (3) to remove
small-scale magnetic energy. Eqs. (1)–(5) constitute the
“hybrid” description of kinetic ions and fluid electrons
[39–42], tailored for the unstratified shearing box [28, 32].

Method of solution.—We solve Eqs. (1)–(5) using
the second-order–accurate particle-in-cell code Pegasus
[32]. Np = 64NxNyNz ion particles are drawn from a
Maxwell distribution with �i0 ⌘ v2

thi0
/v2

A0
= 200 and

placed on a 3D shearing-periodic grid with Nx ⇥ Ny ⇥

Nz = 384 ⇥ 1536 ⇥ 384 cells spanning Lx ⇥ Ly ⇥ Lz =
H ⇥ 4H ⇥ H, where H ⌘ vthi0/�rot is the disk scale
height, vthi0 ⌘ (2T0i/mi)1/2 is the ion thermal speed, and
vA0 ⌘ B0/(4⇡min0i)1/2 is the Alfvén speed; the subscript
“0” denotes an initial value. We assume zero mean mag-
netic flux: initially, B0 = B0 sin(2⇡x/H)ẑ. If amplified
and sustained by the MRI, this field configuration would
constitute a “magnetorotational dynamo” [43]. The ini-
tial ion gyrofrequency �i0 ⌘ eB0/mic = 50�rot; the ini-
tial ion Larmor radius ⇢i0 ⌘ vthi0/�i0 = 0.02H. The
electrons are Maxwellian and isothermal with Te = Ti0,
so that the total initial plasma �0 = �i0+�e0 = 400. The
magnetic Reynolds number Rm ⌘ �rotH2/⌘ = 37, 500.
These parameters provide reasonable scale separation be-
tween the grid scale, the Larmor scale, and the box size,
one which improves as the MRI grows and the plasma be-
comes more magnetized. The moments ni and niui are
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FIG. 1: Evolution of box-averaged (a) magnetic energy and
thermal pressure, (b) kinetic energy, (c) pressure anisotropy
(compared to magnetic energy), and (d) xy components of the
total, Maxwell, viscous, and Reynolds stresses, all normalized
to initial thermal pressure p0. The inset in (c) shows a slice
of the magnetic-field strength in the x-z plane at the time
marked by the dot; mirror-mode parasites, which feed o↵ the
pressure anisotropy generated by the MRI, are evident. The
plus sign in (d) denotes the value of ��Txy/p0�� obtained in an
MHD simulation of the zero-net-flux MRI with Pm = 16 [26].

low-pass filtered once per timestep to mitigate feedback
from finite-particle-number noise. A fourth-order hyper-
resistivity is used to damp dispersive fluctuations at the
grid. In what follows, h·i denotes a spatial average; hh·ii

denotes a spatio-temporal average.

Results.—Figure 1(a) presents the evolution of the box-
averaged magnetic and thermal pressures. In the early,
linear (“channel”) phase, the MRI grows the horizon-
tal components of the magnetic field exponentially. By

Figure 48. Top left: 3D rendering of magnetic-field lines in a 3D-3V hybrid Eulerian
Vlasov-Maxwell simulation of small-scale dynamo action in the magnetised regime (⇢i/`0 = 0.016
initially). A collisionless plasma flow forced at the box wavenumber (k0 = 2⇡/`0) slowly
stretches the initial magnetic-field seed, generating local pressure anisotropies (positive �i in
red, negative �i in blue). This in turn excites parasitic kinetic-scale instabilities (adapted from
Rincon et al. 2016). The inset is a close-up showing ion density fluctuations in a region of
�i > 0 where the mirror instability is thought to be excited). Top right: 2D snapshot of
magnetic-field strength in a 3D-3V hybrid PIC simulation of collisionless MRI in the magnetised
regime (⇢i/`0 = 0.02 initially). The co-development of fluid-scale and kinetic-scale instabilities
(mirror modes in regions of increasing magnetic field) is particularly clear here: the MRI is
responsible for the large-scale vertical sinusoidal fluctuation of the magnetic field, while the
mirror instability generates the smaller-scale fluctuations in the regions where the large-scale
magnetic field increases locally (adapted from Kunz et al. 2016). Bottom: visualisation of the
magnetic-field strength field in a recent massive 3D-3V hybrid PIC simulation of collisionless
plasma dynamo in the magnetised regime with 10083 spatial resolution and tens of particles per
cell (courtesy of St-Onge & Kunz).

behaviour may be related to one or several of these e↵ects (a faster perpendicular rate
of strain does not in principle imply a faster stretching of the magnetic field though).
The more recent simulations of St-Onge & Kunz (2018) also suggest that this may only

[Saint-Onge & Kunz, ApJ 2018; Kunz et al., 2019 - arXiv: 1903.04080] 

Detailed discussion in my review, also come to journal club tomorrow
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Plasma dynamo: an experimental quest in progress
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Madison Plasma Dynamo Experiment @U. Wisconsin

Turbulent Plasma experiment  
@ ENS Lyon

Oxford Laser Plasma group  
(Gregori, Meinecke et al., PNAS 2015)



Conclusions
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Tomorrow’s fundamental theory challenges
• Turbulent large and small-scale MHD dynamos  

• Unified, self-consistent nonlinear multiscale statistical dynamo theory 

• Requires physically justified closures  

• Description of asymptotic regimes (very high Re and Rm, low Pm, strong rotation) 

• Interactions of different physical processes and geometrical effects 
• MHD instabilities combined to shear (magnetic buoyancy, MRI etc.) 

• Coherent structures (vortices, zonal flows, convection columns, tangent cylinders) 

• Reconnection in dynamos 

• Plasma effects (batteries, pressure anisotropies, partial ionization etc.) 

• History of cosmic magnetism 
• from the pre-CMB era to stellar and planetary magnetic fields
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