Dynamo theory

y . - .
ative portrait'inspired %\/ r’i ‘é‘ d‘arguhents with
ﬁl'ex Schekochlhln Steve Cowley, Gordon O@I\ﬁ iﬁlchael Ptbctor Geoffroy Lesur, C
Longaretn Tarek Yousef, Tobi Heinemann, Nig | Weiss, PaulBushby Sébastien Fromang
-~ “"Dawd H,uhes Chris Jones, Cary Forest, Jean-Frangois Pinton, Nicolas Plihon, Stefan B

< mmarruel Dormy Yannick Ponty,” Thierry Passot, Franck Plunian, Francesco
“ablo 1V

0

(TAal C
. -
0.-

, Dan Lathrop Jonathan Squire, Russell Kulsrud, Matt Kun Stas Bc dyr
) -~ oemre, Nic ‘Brummell, Matt Browning, Katia Ferriere, Michel Rieutord, Bons
= O . . ~

w‘ﬂ?'v,.- pieres, Boris Dintrans, “dean-Francois Donati, Sacha Brun, Laurene Jouve,
el B r:t(i--e‘o Guenter"’ﬁ_i{emger, Anvar/Ghukurov, Igor Rogachevskii and l\‘,@manﬁ

.: ‘~ . ) Y "
n?& 3"‘ P PR o
- ! ™ E _ ' - - - r - Rad p
| . 0;."&‘ See Lt But all mistakes and Imprecisions are mine
» e o :
By . ‘ L 4 ' .

S N



Introduction

e Short and easy (3h)

Setting the stage

e Not too long and “straightforward” (4h)

Small scale dynamos
* Long and difficult (6h)

Large-scale dynamos

» Just a tad shorter and less difficult (4h)

Connections between the two

e Short and controversial (2h)

Instability-driven dynamos

Outline

quintedé‘“-'n Proc. Summer School of Theoretical Physics,
s Houcheés, France, July 1973, pp.149-234

Y Published 1977, Gordén and Breach.
s;_ ' www.moffatt.tc @

Six Lectures on General Fluid
Dynamics and Two on
Hydromagnetic Dynamo

Theory

H. Keith Moffatt

Department of Applied Mathematics and Theoretical Physics,
Silver Street, Cambridge, England

It will be evident that in the time available I have had to skate over certain
difficult topics with indecent haste. I hope however that I have succeeded in
conveying something of the excitement of current research in dynamo

theory and something of the general flavour of the subject. Those already
acquainted with the subject will know that my account is \yoefu!ly one-

sided

« Short and seemingly easier, but actually really difficult (3h)

Collisionless plasma dynamo
« Short and a bit crazy, also difficult (4h)

Les Houches, May 2019






What is dynamo theory about ?

* The origin, and sustainment, of magnetic fields in the universe
* on the Earth, other planets and their satellites (“planetary magnetism”)
* on the Sun and other stars (“stellar magnetism”)

* in galaxies, clusters and the early universe (“cosmic magnetism”)

* Understanding their structural, statistical, and dynamical properties




The fluid/plasma dynamo conundrum

* Most astrophysical bodies, and many planetary interiors, are
* in an electrically conducting fluid (MHD) or weakly-collisional plasma state
* In aturbulent state

 (differentially) rotating: shearing, Coriolis and precessing effects

* Main questions




A touch of history

e Self-exciting fluid dynamos are now a century-old idea

e First invoked by Larmor in 1919 (sunspot magnetism)

e The idea took a lot of time to gain ground
e Cowling’s antidynamo theorem (1933)
e First examples in the 1950s (e.g. Herzenberg dynamo)

» Parker’s solar dynamo phenomenology (1955)

* Golden age of mathematical theory




Solar magnetism
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Global solar cycle dynamics
~ 1G-a few kG (sunspots)

Small-scale surface dynamics
~ up to kG



Planetary magnetism

[Swarm/ESA] [HST/NASA]

Earth’s magnetic field (2014) ~ 10-50 G Jupiter Auroras



Galactic magnetism

Planck/ESA]

[
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Galactic magnetic field ~ 10 pG

M51 magnetic field

[Beck et al. VLA/Effelsberg]



Galaxy clusters and cosmic magnetism

[Taylor & Perley, ApJ 1993]
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Takeaway phenomenological points

 Many astrophysical objects have global, ordered fields
* Differential rotation, global symmetries and geometry important
e Coherent structures and MHD instabilities may also be very important

* Motivation for the development of “large-scale” dynamo theories

e | ots of “small-scale”, random fields also discovered from the 70s







Mathematical formulation

e Compressible, viscous, resistive MHD equations

9,
ot e External forcing (spoon,
3 . B gravity etc.)
u
0 PO 0 T MO v T, V.1 +F(x, ¢
¢

Viscous stresses




Magnetic field energetics

 Magnetic energy equation

B2 o B .
Sl e ad il Gl s s bl
dt. | 87 C 47 o

Minus the work of the
Lorentz force on the flow

Poynting flux Ohmic dissipation
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Conservation laws in ideal MHD

e Alfvén’s theorem(s)

 Magnetic field lines are “frozen into” the fluid just as material lines

D (B B Dor
5(2)-2-vu =X =sr-vu
Dt \ p p Dt
 Magnetic tflux through material surfaces is conserved
D
— (B-0S)=0
T )

e Magnelic helicity H,. = /A-BdSr conservation

e A measure of magnetic linkage / knottedness

1 0A
TR .
Q(A-B)—FV'[C@B—FAX(HXB)]:O

ot

Les Houches, May 2019



Simple MHD system for dynamo theory

* |[ncompressible, resistive, viscous MHD

o (Captures a great deal of the dynamo problem

Magnetic tension

w" u-Vu=-VP+B-VB+vAu -+ f(x,1t

ot

Induction




Scales and dimensionless numbers

« System/integral scale £o, Uo

e Fluid system with two dissipation channels

e Dimensionless numbers:

T

Re Rm — folo

U
v n 7]




The magnetic Prandtl number landscape

* Viige range Of Fm IR nature 1
e Liquid metals have Pm << 1 oL
Rm
e Computers have Pm ~ O(1 1025 Clusters ?
Galaxies, ISM

* For a collisional hydrogen
plasma [Te=Tiin K, nin S.1.]

Simulations
Plasma exp.




Large magnetic Prandtl numbers

* Pm > 1: resistive cut-off scale is smaller than viscous scale
* |n Kolmogorov turbulence, rate of strain goes as £-2/3
* Viscous eddies are the fastest at stretching B: uy/ £y~ Re'2 Ug/ £o

« To estimate the resistive scale £,, balance stretching by these
eddies ~ uy/Ay with ohmic diffusion rate /2

~ Pm._l/Zﬁ




Low magnetic Prandtl numbers

* Pm < 1: resistive cut-off falls in the turbulent inertial range

« To estimate the resistive scale £, balance magnetic stretching by the
eddies at the same scale ~ un£,, with diffusion n/2y2

s e Hm(lo= Ul baln =

577 o Pm_3/4€,, e.qg. stellar, solar,
liquid metals (Earth, experiments)




Dynamo fundamentals

* The problem of exciting a dynamo is an instability problem
Lol

N

)

e Growth requires stretching to overcome diffusion (measured by Rm =

: : 0B
e Kinematic dynamo problem: = kU VB =B Y a0l

e Find exponentially growing solutions of the linear induction equation
(velocity field is prescribed)




Cowling’s antidynamo theorem

e Axisymmetric dynamo action is impossible [Cowling, MNRAS, 1933

e |n polar geometry, write A Aez |

Poloidal Toroidal

= B_N - e ) Lube,

t U= +rl)e,




Antidynamo theorems and their implications

 Many other antidynamo results can be proven

* Plane two-dimensional motions cannot sustain a dynamo
[Zel'dovich’s theorem, JETP 1957]

* A purely toroidal flow cannot sustain a dynamo

« B(z,y,t) cannot be a dynamo field




The fast dynamo paradigm

[Vainshtein & Zel’dovich, SPU, 1972]

e Chaotic stretching, twisting, folding and merging of field lines

e For small diffusion, field doubles at each “iteration” (characteristic time)

* Exponential growth with “ideal” growth rate ~,, = In2 ~ stretching rate

Stretch ©




Small-scale dynamo
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Numerical evidence

* Homogeneous, isotropic, non-helical, incompressible, 3D
turbulent flow of conducting fluid is a small-scale dynamo
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FIG. 1. Turbulent dynamo with nonhelical driving. K
Temporal variation of kinetic (£¥) and magnetic (¥)
energy. Reynolds numbers are R =R¥=~100. The FIG. 2. Kinetic (") and magnetic (E¥) energy spec-
time unit is the eddy-turnover timel o/ . tra at ¢ = 27. Nonhelical dynamo with R = R¥~100.

64x64x64 spectral DNS simulations at Pm=1

[Meneguzzi, Frisch, Pouquet, PRL, 1981]

Les Houches, May 2019



Zel'dovich-Moffatt-Saffman phenomenology

[Moffatt & Saffman, 7, 155 (1964); Phys. Fluids, Zel’dovich et al., JFM 144, 1 (1984)]

e Consider incompressible, kinematic dynamo problem
0B

u-VB=B: -Vu+17AB V.. B =

e Assume that B(0,r) = By(r

* has finite total, energy, no singularity




tretching and squeezing

dor;
e Evolution of vector connecting 2 fluid particles: d—: — @

e Consider constant C = diag(cy, ¢a, 3
SRR cp+c2+c3=0

e Exponential stretching along first axis

¢ >l ey > o Cla=iCo )= 3
e €9 €1




Magnetic field evolution

» Decompose B(t,r) = t. ko) exp (ik(t) - r)d’kg
db
S =Cb-nb T "k  kb=0

t

« Diffusive part of evolution ~exp | —n [ k?(s)ds
0)

e super-exponential decay of most Fourier modes because




Magnetic field evolution (ropes

e Surviving modes at time t have an initial field
. bl O,ko = bg O,ko kog/k(n ~ €XP —|02|t

* This field is stretched along the first axis, so

t, ko) ~ exp (cit) exp (—|ca|t

* Now, estimate the magnetic field in physical
¢ S A ‘w}n gl e B S Bl 5 : ] J‘ piauE b '4" “'ii;""“”‘”’%



Magnetic energy evolution (ropes

» \What about magnetic energy ?
n= | B%t,r)d°r

Volume ~ exp(cyt

Important: no shrinking along axis 2 and 3 as
diffusion sets a minimum scale in these directions




Generalization to random, time-dependent shear

e Renovate shear flow every time-interval =

T o
X \\ D

e Succession of random area-preserving stretches and squeezes

3

» Introduce the matrix Ty = T(tg,t) suchthat k(t, ko) = Tikg




Lyapunov basis of random shear flow

e /Zel'dovich showed that the cumulative effects of any random
seguence of shears can be reduced to diagonal form

e |n particular there is always a net positive “stretching” Lyapunov exponent

1
lim —Ink(nt,kg) =7 >0

n—o00 NT

* The underlying Lyapunov basis (e, €2, €3




Small-scale dynamo fields at Pm > 1

o Pr=Rm=1250. Re="1 [from Schekechihin et al.. Ap. 2004]

v/

t?\ N

)




Small-scale dynamo at low Pm

e Critical Rm~200

 More complicated than

a - s Prr=1"Re=440."Rm=440
Zel’'dovich picture | S S (# Pyt Re=so 7
\ &
y
l"‘
" &

PM=0:07, Re=6200, Rm=430

-

—— Laplaciah
— - — B-order hyper
———4—— Ponty et al. 2006

_;'_..-1‘

‘Pm=100 ‘Pm=10k" ‘Pm=1

[Iskakov et al., PRL 2007] ' N

215 Les Houches, May 2019



Introduction to Kazantsev-Kraichnan

e Consider again the following kinematic dynamo problem:
0B

u-VB=B: -Vu+17AB V.. B =

e This problem can be solved analytically if u is

e arandom Gaussian process with no memory (zero-correlation time

-+ The so-called Kraichnan ensemble




Basic assumptions on the velocity

e 3D, statistically steady, homogeneous

w(x, ) (X )N =R (x—x',t — ¢
* Gaussian
e pdf Plu] = Cexp —%/dt/dt’/d‘g)c/dgx’Dij ot e D e (0

 Covariance matrix [ dr [ d®yDi(t—7,x—y)R¥(r —t',y —x') = 6]6(t — t')6(x — X)

B
i

S AT




Equation for the magnetic correlation

» (Goal: derive a closed equation for the two-point, single time
magnetic correlator [or magnetic energy spectrum

B'(x,t)B’(x’,t)) = HY (x — %X/, t




Closure procedure in a nutshell

* Velocity field is Gaussian, so we can use the Furutsu-Novikov
formula [Gaussian integration by parts]

(uix OFful) = [t [ &x" (s 0", ) (Gores

* Reduction into integrals of products of second order moments only, e.g.

t k X ) x/
(i ) BEGa B Bl 6 :/o dt”/d3x’/ lotoe b 1) <5 Z 5257(2515’(’) 5 >




The closed equation

e Using the appropriate projection operators, the problem
reduces to a closed equation for the scalar function Hr(r,t

OH 4 4
WZI{HE{—I— ;lﬁ)—l—lil H}J—F /43//—|—;/<3/ HL

B
i

S AT




Solutions

O 1 ) = 2
8_: —V’r
t 2m(r k(r) =2n+ kr(0) — k(7
% 1 2 '(1)?
Vil e e Sl




Different regimes

* Recall {(u'(x,t Il = e e

e So k(1) ~ du(r)’r(r) ~ réu(r) is a turbulent diffusivity

s Gonsidenihicisealine a0 et Baicies et
e Smoatadlow: G 0 D ‘large Pm”

 “Kolmogorov” turbulence: du ~ /3 = ¢=1+1/3=4/3 [‘lowPm”

B
i

S AT




A tew important results at large Pm

» Consider the so called Batchelor regime ¢, < ¢,

 The magnetic field is stretched and transported by a viscous flow

O Tlate Visleeay imsliol 1S Sierlelelinl G ) = ! — i 6" — il

e Spectral view at scales much smaller than the viscous scale

e Work under Kazantsev-Kraichnan assumptions




Diffusion-free regime

* Magnetic diffusion negligible it magnetic field only has k£ < &,

e |f we excite a given ko initially, the spectrum spreads towards small-scales

Lo s 5 In? (k/ko)
Ll S (ko> 4mteXp[ 4yt ]

* The energy of each mode grows at rate 3+/4

e Jotal energy grows at rate 2+ as the number of excited mode also grows




Resistive regime

* After the spectrums hits £ ~ k,,, the long-time asymptotics is

k
Mk, t o<k3/2K0 T & ke — \/7/ 10n NPm1/2kV
7

e The spectrum peaks at the resistive scale [falls off exponentially beyond]

* The asymptotic total energy growth rate is now also approximately 3v/4

[weak dependence on boundary Condition at small k]




Magnetic pdt in the diffusion-free regime

 One can derive a Fokker-Planck equation for the pdf of B

=BBl- LB o8 PR

Simplifies in the isotropic case as 1D diffusion equation with drift

8P /4:218

B 9, ., bdf defined as

B pip

ot 4 B29B~ 0B B"(t)\=4rx | dBB2**"P[B
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Saturation of small-scale dynamo

* As B gets large-enough, Lorentz force saturates dynamo
[Meneguzzi et al., PRL 1981]

 What is “large-enough “7

* How does it work ?

e Historical iIdeas

e Batchelor argument [PRSL,1950]:
* magnetic field is similar to hydrodynamic vorticity
» should peak at viscous scale, hence saturation for B? ~ §u?

<B2> R <u2> Sub-equipartition unless Re=1

e SchlUter-Biermann argument [Z. Naturforsch.,1950]:
> equipartition at all scales (B?) ~ (u”)

Les Houches, May 2019
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Saturation phenomenology

e Geometric structure and orientation of the field matters

* Magnetic tension B - VB encodes magnetic curvature
* Reduction of stretching Lyapunov exponents

« A field realization can only saturate itself

Saturated

"'-' :' . : r’.
_ ‘A‘ '\.‘ TN
L=0.000

[Cattaneo et al., PRL 1996] [Cattaneo & Tobias, JFM 2009]

e Saturation at low Pm
* Pretty much Terra incognita (almost no published simulation)

Les Houches, May 2019



Large Pm phenomenology

e Plausible (but not definitive) scenario from simulations
[Schekochihin et al., Apd 2002, 2004]

* |Lorentz force first suppresses stretching at viscous scales

B VB ~u-Vu~ u’/l,
SR <B2 0 Re—1/2 U2
~ BQ/K,/ (folded structure)

* From there, slower, larger-scale eddies take over stretching




What about reconnection ?

* New challenges...

Courtesy from Iskakov & Schekochihin (unpublished)




| arge-scale dynamo




Differential rotation: the Omega effect

e Shearing of magnetic field by ditterential rotation (shear)
* |n polar geometry, consider the initial axisymmetric configuration
« a purely poloidal magnetic field: Bpo1 = By (r, 2)e, + B, (7, 2)e,

- atoroidal, shearing velocity field (differential rotation): u = r{}(r, z)e,,

0B 1
atcp — T(Bpol 2 V)Q e 7 ( ) Bgo




Turbulence: Parker's mechanism

o Effect of a localized cyclonic swirl on a straight magnetic field

e |In polar geometry, this mechanism can produce axisymmetric poloidal field out
of axisymmetric toroidal field — and the converse

e Kinetic helicity in the swirl is essential

* This “alpha effect” can mediate statistical dynamo action
e Ensemble of turbulent helical swirls should have a net effect of this kind

e Cowling’s theorem does not apply as each swirl is localized (“non-axisymmetric”)

S16) Les Houches, May 2019
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Numerical evidence

 Small-scale helical turbulence can generate large-scale field

e Critical Rmis O(1), lower than that of the small-scale dynamo

[Brandenburg, Apd 2001]
[Meneguzzi et al., PRL 1981 — again !]
0.6

0.5
0.4
0.3

-3-2-10 1 2 3 -83-2-10 1 2 3 -3-2-10 1 2 3
t=300

0.2

0.1

0 0

FIG. 4. Helical dynamo with driving at intermediate
scales (k= 5). Temporal variation of kinetic energy
(EY), magnetic energy (E¥), and magnetic helicity
(-#").

- -3 L ~ —3

-3-2-10 1 2 3 -3-2-10 1 2 3 -3-2-10 1 2 3

o Helicity seemingly key for large-scale dynamos (but see later)

Les Houches, May 2019
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Twisting and magnetic helicity

* Assume conservation of magnetic helicity (up to resistive effects)

e Systematic twisting produces

e negative large-scale magnetic helicity (large-scale writhe)

e positive small-scale magnetic helicity (small-scale twist)

Helicity
spectrum

[adapted from Mininni, ARFM 2011]

e Conseqguences

* Interpretation of large-scale helical dynamo as “inverse transfer” of helicity

e Frisch et al., JFM 197
* Transfer of helicity at small scales hiscn ol o]

Les Houches, May 2019



Mean-field approach

* [Incompressible, kinematic problem with uniform diffusivity

B
%—t=V>< uxB)+nAB

r—0 N.-B = ()

 Split fields into large-scale (¢ > ¢y) and fluctuating part (¢ < ¢




Mean-field approach

~

0B e e . S =
E:Vx (axB)+ (auxB)+(uxB)—-(axB)|+nAB
Tangling/shearing Tricky bit — closure problem !
of mean field [also known as the “pain in the neck” term]

» Assume linear relation between B and B jwaming: hard to jusiify i

there is small-scale dynamo !]

« Expand (a1 X B)i — aijﬁj s 5ijkvkﬁj e

» Simplest pseudo-isotropic case: a;; = a0;5, Bk = Béijk




Mean-field dynamo with Omega effect

» Add large-scale differential rotation to MF equation: @ = rQ(r, z)e,,
OB i o
Ezew’r Bpol'v Q—I—VX aB —|—6AB

Omega effect Alpha effect

* Growing, oscillatory solutions leading to field reversals: Parker waves

e This is called the o) dynamo (%S if «x acts both ways)




Calculation of mean-field coefficients

 We only know how to calculate a and g perturbatively for
e small correlation times (low Strouhal number TC/TNL, random waves

» low magnetic Reynolds number Rm ~ 7, /71, < 1

=Vx|[(axB)+(axB)-(axB)|+7AB




alculation of mean-field coefficients

 Let’s see how the calculation proceeds for 7./mL < 1

* Neglecting the tricky term and assuming small resistivity,

7
e B i x/Vx ua(t’) x B(t)|dt’
0
t —_— A l e Ny
— [&t—t’Bt’ = G N B i (el ca)
( Il




Dynamical regime of large-scale dynamos

 When B gets “large enough”, the Lorentz force back-reacts

» Big questions: what happens then, and what is “large-enough” ?
[Brandenburg & Subramanian, Phys. Rep. 2005, and refs. therein: Proctor, 2003; Diamond et al. 2005]

e Equipartition argument: saturation when B ~ 4rpu = B ol

B and u have very different scales

» Large-scale dynamos alone produce plenty of small-scale field




The quenching issue

e Physical origin of quenching debated:

* Magnetized fluid has “memory”: possible drastic reduction of statistical effects
compared to random walk estimates [see review by Diamond et al., 2005]

« Magnetic helicity conservation argument:

e in “closed” systems, large-scale field can only reach equipartition
on slow, large-scale resistive timescales [e.g. Brandenburg, ApJ 2001]

* Possible way out of problem Is to "evacuate” magnetic helicity



Transitional (yet important) remarks

* Historically, mean-field models have been at the core of modelling of

e solar and stellar dynamos — “alpha” provided by cyclonic convection

e galactic dynamos — “alpha” provided by supernova explosions

e But classical mean-tield theory taces strong limitations

e Astro turbulence typically has 7./7n, ~ 1 and Rm > 1




Connecting both




Large-scale dynamos with Kasantsev

[Vainshtein & Kitchatinov, JFM 1986,
Berger & Rosner, GAFD 1995,

» Consider turbulence with net helicity o G D
oldyrev et al.,

 Add a mirror symmetry-breaking term to the correlators

j . rird .
K4 (I‘) = “N(T) (513 i T_2> 4 IiL(T) T2 L g(r)e”krk
z’Tj

i -
o ) + Hp(r,8)— + K(r)e ek
/8

Hldse e Flnie b (5” i

« r — oo asymptotics of model gives mean-field a” equation




Self-adjoint spinorial form

OW o :
e = PO RN A(r) = V220 + K (0) — ki (r)]
Ot B(r) = v2[2n+ kr(0) — kL(r)]
C(r) =v2[g(0) — g(r)] r
. VA 0 e E G Gy ga : 1
R 0 _ig 5 =l e Ez—?r’EBET \/i(A_TA,)




Growing helical modes

e Helicity allows growing large-scale  vg@) ¢
modes
/
e Viglr)=2/r?—a?/(B+n), fy<r / /\\ >

» Bound modes (¥ > 70) dominate the
Kinematic stage

e As Y — 7o, their spectrum peak shifts
towards that of “mean-field” modes

* Further hints that quantitative large-scale dynamo theory
should factor in the small-scale dynamo

6/ Les Houches, May 2019



Order out of chaos ?

e L arge-scale dynamos at largish Rm now
observed numerically

* Galloway-Proctor flow + Shear
[Tobias & Cattaneo, Nature 2013]

“Suppression” principle: shear
turns off small-scale dynamo

Y
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One last (lack of) twist

* Large-scale dynamo action is possible without net helicity

* The shear dynamo: u = Sxe, + non-helical small-scale turbulence

[Yousef et al., PRL 2008]

 Mean-field description in terms of “WxJ” effect [Kleeorin & Rogachevskii]

e “Incoherent” alpha effect [Silant'ev 2007, Proctor 2007, Brandenburg 2008], etcC.

 Recent developments [Squire & Battacharjee, PRL 2015, 2016]

e Saturated small-scale dynamo in a shear flow can lead to large-scale dynamo

Les Houches, May 2019



More ways to make magnetic fields:




Instability-driven dynamos

 Many astrophysical systems

* host differential rotation: i.e. there is a background shear flow

e are prone to non-axisymmetric MHD instabilities

e This can lead to specific nonlinear forms of dynamo action

e Analogous to self-sustaining nonlinear process in hydro shear flows

Axisymmetric

toroidal
\agnetic fiel

field




i

Subcritical nature

e Such dynamos are subcritical / essentially nonlinear
 “Egg and chicken” problem
« Non-axisymmetric instability growth requires large-scale field
e [arge-scale field sustainment rests on non-axisymmetric instability

« Non-axisymmetric @, B jointly excited by instability: Lorentz force essential

* Implications
e No kinematic dynamo stage

e Homoclinic/heteroclinic bifurcations

@
S

<
(o
s
=
=
=
g
S
=
S
=
3
=
5
2
ot
[
o

Dynamical lifetime (S-1)

 Nonlinear EMF/field relationship

300 350 400

[RiOlS et a|_’ A&A 201 3] - Magnetic Reynolds number, Rm
Les Houches, May 2019
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“Solar-like” magnetic buoyancy dynamo

e Shear + Magnetic buoyancy + Kelvin-Helmholtz

* Coherent, strongly chaotic dynamo action
[Cline et al., Apd 2003]

1400 1600
time

-300 -200 -—-100 100 200 300

0
< B, >

Les Houches, May 2019



MRI/accretion-disk dynamo

e Keplerian shear flow turbulence is thought to be MRI-driven

e Possible even in the absence of net T= 16
magnetic flux [Hawley et al., ApJ 1996]

* Characterised by dynamical
reversals of large-scale field

* Non-axisymmetric MRI of toroidal b |
field critical (magnetic buoyancy) [Herault et al., PRE 2011]

20 40 60 80 100 120
t (orbits)




From subcritical to statistical

o Statistical theory relevant but difficult

0.06
0.04

* Nonlinear EMF/field relationship

0.00
0.02
0.04

 Mean-field approach controversial

 MRI-dynamo “chimeras”

e “Semi-statistical” solutions

0.015

0.010
n
0.005 -

0.000 2 ==z oe
0 7T/4 T/2 37/4 T 5T/4 3172 1T/4 2T

|-0.2

Time
y
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=0

7o Les Houches, May 2019



Plasma dynamo

-

- N s
: \\ ’/a/ \ //r/
L/ : N \\z\:
h




What about weakly collisional plasmas “

e Some high-energy astrophysical plasmas are not MHD fluids

 |ntracluster medium, hot accretion flows, primordial plasma (?)

* What happens to dynamos ?  pressure scale Height ~ 100 kpc (1017-1¢ km)

* Implications for magnetogenesis

» “Pathfinding” for experiments

Larmor radii ~

Fabian et al., MNRAS 2011



Pressure anisotropy generation

* In a magnetized, weakly collisional plasma
 The pressure is an anisotropic tensor with respect to the direction of B

o — msv_zL/QB is almost conserved

e Large-scale, field-stretching motions generate pressure anisotropy

~* Collisions tend to relax it




e,

Pressure anisotropy-driven instabilities

* 1, =mv? /2B conservation implies kinetic instability everywhere

 |ocal increase of |B| —> increase of p,

e mirror instable

e |ocal decrease of

e firehose instab

1AL e o - 1/5
Dl

B| —> decrease of p.

sl 9/

pL

e Small, fast scales

. ICM: pi ~ 104 km, 21 ~ second

e Nonlinear feedback on “fluid” scales

[Scheckochihin et al, Apd 2005, Schekochihin et al., PRL 2008;
Rosin et al., MNRAS 2011; Rincon et al., MNRAS 2015]

mifror Bale et a|_’
oz, PRL 2009
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[Kunz et al., PRL 2014]
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So what happens to dynamos 7

e The most efficient eddies are the smallest, fastest ones

e Inthe ICM, such plasma motions are weakly collisional

e Plasma is magnetised well below equipartition (ICM: ~10-18 G

e Field-stretching motions (= dynamo !) generate pressure anisotropy

e Pressure-anisotropy driven instabilities |




Collisionless plasma dynamo problem

» Unmagnetized problem: p;/L > 1

* |s a collisionless, unmagnetized 3D chaotic flow of plasma a good dynamo 7

» Magnetized problem: p; /L < 1

* How do pressure-anisotropy kinetic instabilities interfere with magnetic growth ?

* Annoying “details”

S s s ! vl
o



Unmagnetized regime

* Four simulations with same initial field and flow history, but
different magnetic diffusivity »
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Unmagnetized regime: growing case




Magnetized regime




Magnetized regime

e Firehose instability in strong-tield curvature regions




The challenge of a transport theory

* Anisotropic, dynamically evolving tluid-scale transport
 Magnetization impedes perpendicular streaming: less viscosity

* Pressure anisotropy regulation by saturation of kinetic instabilities
 Reduction of effective stretching rate: akin to more viscosity

* Particle scattering off FLR-scale magnetic wiggles: less viscosity

» Effective Re.(|B|), Rei(|B|) and Pm ?




Plasma dynamo: an experimental quest in progress

Madison Plasma Dynamo Experiment @U. Wisconsin

Turbulent Plasma experiment
@ ENS Lyon

.....
-~

Oxford Laser Plasma group
(Gregori, Meinecke et al., PNAS 2015)
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Tomorrow’s fundamental theory challenges

* Turbulent large and small-scale MHD dynamos
e Unified, self-consistent nonlinear multiscale statistical dynamo theory
* Requires physically justified closures

e Description of asymptotic regimes (very high Re and Rm, low Pm, strong rotation)

* Interactions of different physical processes and geometrical eftects

-+ MHD instabilities combined to shear (magnetic buoyancy, MRl etc.)




