Tokamaks and stellarators

Per Helander
Max Planck Institute for Plasma Physics, Greifswald
PERON ANNOUNCES NEW WAY TO MAKE ATOM YIELD POWER

- Reports Argentina has devised thermonuclear reaction that does not use uranium

- News conference by Argentinian dictator Juan Peron:
 - Argentina had built a fusion pilot plant
 - The reaction required “enormously high temperatures of millions of degrees”

- Met with skepticism from Fermi and other leading physicists
Lyman Spitzer Jr, 1914-1997

- Head of Princeton Astrophysics (36)
- Pioneered the study of the interstellar medium

\[^6\text{Li} + n \rightarrow ^4\text{He} \ (2.05\text{MeV}) + T \ (2.73\text{MeV}) \]

\[^7\text{Li} + n \rightarrow ^4\text{He} + T + n - 2.47 \text{ MeV} \]
Magnetic confinement

without magnetic field

with magnetic field

ions, electrons
Motion in an inhomogenous magnetic field

• If \(B \) varies slowly on the length scale of the gyroradius \(\rho \)

\[
\rho_* = \frac{\rho}{R} \ll 1, \quad (R^{-1} = |\nabla B|/B)
\]

the particles drift slowly across the field

\[
\begin{align*}
\mathbf{r} &= \mathbf{R} + \vec{\rho}, \\
\dot{\mathbf{R}} &= v_\parallel \mathbf{b} + \frac{v_\perp^2/2 + v_\parallel^2}{\Omega} \mathbf{b} \times \nabla \ln B = v_\parallel \mathbf{b} + \mathbf{v}_d \\
\mathbf{b} &= \mathbf{B}/B
\end{align*}
\]

• Lagrangian (Taylor 1964)

\[
L = \frac{mv_\parallel^2}{2} + e \mathbf{A} \cdot \dot{\mathbf{R}} - \mu B
\]

\[
\mu = \frac{mv_\perp^2}{2B} = \text{adiabatic invariant}
\]
The tokamak

Usually credited to Tamm and Sakharov (1951), but also conceived by others (Spitzer, Schlüter, ...).
The tokamak

Usually credited to Tamm and Sakharov (1951), but also conceived by others (Spitzer, Schlüter, ...).
Mirroring

\[E = \frac{mv^2}{2} + \mu B = \text{constant}, \quad \mu = \frac{mv^2}{2B} \]

\[\Rightarrow \quad B < \frac{E}{\mu} \]
Spitzer’s first idea
The classical stellarator
The classical stellarator
"Unwrap" the surface, and plot consider the field lines:

\[
\theta = \text{poloidal angle}
\]

\[
\varphi = \text{toroidal angle}
\]

The rotational transform is defined as the winding number

\[
\iota = \lim_{l \to \infty} \frac{\theta(l)}{\varphi(l)}
\]
Ampère's law

\[\oint_C \mathbf{B} \cdot d\mathbf{r} = 0 \]
Analogy to hydrodynamics

MHD equation of motion:

\[\rho \left(\frac{\partial \mathbf{V}}{\partial t} + \mathbf{V} \cdot \nabla \mathbf{V} \right) = \mathbf{J} \times \mathbf{B} - \nabla p \]

Equilibrium without flow:

\[\mathbf{J} \times \mathbf{B} = \nabla p \quad \Rightarrow \quad \mathbf{B} \cdot \nabla p = 0 \]

\[(\nabla \times \mathbf{B}) \times \mathbf{B} = \frac{\nabla p}{\mu_0} \]

Compare with hydrodynamics:

\[\rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = -\nabla P, \quad \nabla \cdot \mathbf{u} = 0 \]

Stationary flows satisfy:

\[\mathbf{u} \cdot \nabla \mathbf{u} = -\nabla \left(\frac{P}{\rho} \right) \quad \Rightarrow \quad (\nabla \times \mathbf{u}) \times \mathbf{u} = -\nabla \left(\frac{P}{\rho} + \frac{u^2}{2} \right) \]
Analogy to hydrodynamics

Isomorphism:

\[u \Leftrightarrow B \]
\[\nabla \times u \Leftrightarrow \nabla \times B \]

Magnetic field lines may twist in the absence of current.

Fluid streamlines may twist in the absence of vorticity.
First stellarator

- Achieved $T = 0.5$ MK
Tokamak breakthrough: 1968

IAEA Fusion Energy Conference, Novosibirsk 1968:

- Soviet tokamak programme
- T_e up to 1 keV!

First dismissed, but later confirmed by UK scientists.
Tokamak genealogy
Tokamaks

ASDEX Upgrade
Garching (D)

EAST
Chengdu (C)

JET
Culham (GB)

DIII-D
San Diego (USA)

ITER
Cadarache (F)

KSTAR
Daejon (KR)

JT-60SA
Naka (JA)

Person
Stellarators

- LHD
 Toki (JA)

- Wendelstein 7-X
 Greifswald (D)

- TJ-II Madrid (E)

- Wendelstein 7-AS
 Garching (D)

- HSX
 Madison (USA)
ITER

- Built in CEA Cadarache
 - 1st Plasma: 2025
 - EU, USA, China, India, Japan, South Korea, Russia

Parameters

R \([m] \) \quad 6,2
a \([m] \) \quad 2,0
\(T_{\text{Puls}} \) \([s] \) \quad 300
\(P_{\text{Fusion}} \) \([MW] \) \quad 500
Energy multiplication (Q) \quad > 10
Cost \([\text{Mrd} \, \€] \) \quad 15
The fusion triple product

Let $n = \text{density}$, $T = \text{temperature}$, $\tau = \text{energy confinement time}$

$$\tau = \frac{\overline{\text{thermal plasma energy}}}{\overline{\text{heating power}}}$$

Energy density $\sim nT$

Rate of collisions $\sim n^2$

Fusion yield per collision $\sim T^2$

Energy production $> \text{energy loss}$ if $n^2 T^2 > nT/\tau$

$nT\tau > 5 \text{ atmosphere seconds}$

Thus we need
- high density
- high temperature ($\sim 100 \text{ million degrees}$)
- long confinement time
Confinement time

\[\tau_E \propto A^{0.40} I^{0.90} P^{-0.65} R^{1.90} a^{0.20} \kappa^{0.80} B^{0.05} n^{0.30} \]

Measured \(\tau_E \) in s

Großer Radius (m)

ITER

DB2P8=1

\(\tau_E \) from scaling law in s

ITER

JET

ASDEX-U
European Fusion Experiment JET (Joint European Torus)

- Largest and most successful fusion experiment in the world
- Collaborative EU project in Culham near Oxford
- Start of construction in 1978; in use since 1983
- 16 MW fusion power with efficiency of 0.64 for about 1 sec
- 4 MW fusion power with efficiency of 0.2, for about 5 sec.
- Temperatures up to 400 Million °C
- Discharges up to 1 Minute
- Plasma current up to 7 Million Amperes
The Tokamak JET from the outside
JET: the world’s largest tokamak (still)

- a high performance DT shot on JET
- achieved the following performance for a pulse lasting several seconds (at $B_\phi = 3.6$ T and $P_h = 25$ MW)

<table>
<thead>
<tr>
<th>density</th>
<th>ion temperature</th>
<th>electron temperature</th>
<th>average β</th>
<th>confinement time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n(0)$</td>
<td>$T_i(0)$</td>
<td>$T_e(0)$</td>
<td>$\langle\beta\rangle \simeq \beta(0)/3$</td>
<td>τ_E</td>
</tr>
<tr>
<td>0.4×10^{20} m$^{-3}$</td>
<td>28 keV</td>
<td>14 keV</td>
<td>0.018</td>
<td>0.9 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\langle p \rangle \tau_E$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.84 atm s</td>
</tr>
</tbody>
</table>
Some tokamak theory

Consider a tokamak with inverse aspect ratio

\[\epsilon = \frac{r}{R} \ll 1 \quad \text{and} \quad q = \frac{r B}{R B_\theta} \geq 1 \]

The magnetic field is then approximately toroidal

\[B \approx F \nabla \varphi \quad \Rightarrow \quad B \approx \frac{F}{R} = B_0 (1 - \epsilon \cos \theta) \]

Particles at \(\theta = \pi/2 \) are trapped if

\[\mu B_0 (1 + \epsilon) > \frac{mv^2}{2} \]

\[\left(\frac{v_{||}}{v} \right)^2 < \epsilon \]

trapped-particle fraction \(\sim \sqrt{\epsilon} \)
Random walk and diffusion

If random steps are taken with

\[\text{step length } = \Delta x \]

\[\text{time between steps } = \Delta t \]

the result after a large number of steps is diffusion.

The distribution function satisfies

\[\frac{\partial f}{\partial t} = D \frac{\partial^2 f}{\partial x^2} \]

where

\[D = \frac{\Delta x^2}{2\Delta t} \]
Neoclassical transport

Banana orbits in a tokamak

Effective collision frequency for trapped particles:

- enhanced because velocity vector needs only be scattered slightly

\[\nu_{\text{eff}} \sim \frac{\nu}{\epsilon} \]
Neoclassical transport in tokamaks

Random-walk estimate

\[D_{\text{banana}} \sim \epsilon^{1/2} \nu_{\text{eff}} \delta r^2 \sim \frac{q^2}{\epsilon^{3/2}} \nu \rho^2 \sim 10^2 \nu \rho^2 \]

fraction of trapped particles

Proper theory obtained by solving the drift kinetic equation by expansion in \(\rho_* \ll 1 \)

\[\frac{\partial f}{\partial t} + (v_\parallel + v_d) \cdot \nabla f = C(f) \]

\[v_\parallel \nabla_\parallel f_0 = C(f_0) \Rightarrow f_0 = n(\psi) \left(\frac{m}{2\pi T(\psi)} \right)^{3/2} e^{-mv^2/2T(\psi)} - e^{\phi_0/T(\psi)} \]

\[v_\parallel \nabla_\parallel f_1 - C(f_1) = -v_d \cdot \nabla f_0 \]

Particle flux

\[\langle \Gamma \cdot \nabla \psi \rangle = \left\langle \int f_1 v_d \cdot \nabla \psi d^3v \right\rangle \]
Neoclassical transport (of electrons) in stellarators

Random walk due to bad orbits:

- Step length
 \[\Delta r \sim v_d \Delta t \]

- Time between steps
 \[\Delta t \sim \frac{\epsilon_h}{\nu} \]

- Diffusion coefficient
 \[D_{1/\nu} \sim \epsilon_h^{1/2} \frac{\Delta r^2}{\Delta t} \sim \frac{\epsilon_h^{3/2} v_d^2}{\nu} \]

- Large at high temperatures, since
 \[D_{1/\nu} \propto \frac{m^{1/2} T^{7/2}}{n B^2 R^2} \]
Other collisionality regimes

\[\nu_\ast = \frac{\nu R}{v_T} \sim \frac{R}{\lambda} \]

\[\lambda = \text{mean free path} \]
Stability

- Economy of magnetic confinement measured by

\[\beta = \frac{\langle p \rangle}{\langle B^2 \rangle / 2\mu_0} \]

- Usually limited in tokamaks to a few percent.

- Toroidal plasma current limited by kink modes

\[q = \left. \frac{rB_\varphi}{RB_\theta} \right|_{\text{edge}} > 2 \]

- Disruptions when the density or current becomes too large.
Tokamak disruptions

- A stability limit is reached.
- Plasma interacts with wall and cools quickly.
- Resistivity increases, $\eta \sim T_e^{-3/2}$
- Large electric field is induced, trying to maintain the plasma current.
- Runaway electrons are generated, which
 - are accelerated to ~20 MeV.
 - carry much of the original current.
 - usually hit the wall => hard X-rays.
 - can cause serious damage.
 - occasionally remain in the cool plasma (~10 eV) for several s.

(JET: Gill et al, Nucl. Fusion, 2000)
The pressure is limited by equilibrium, not stability

- Shafranov shift
- Ergodisation

No disruptions

No Greenwald density limit

$n_e(0)$ up to 10^{21}m^{-3} in LHD
Challenges

- **Stability**: when the pressure or current is high enough, the plasma tends to become unstable
 - require strong magnetic fields

- **Turbulence**: limits the energy confinement for a device of given size
 - need strong magnetic field or large device

- **Power loading**: high volume to area ratio leads to high wall heat flux.

- **Neutron activation**: materials must withstand high neutron fluxes
Optimisation

The (vacuum) magnetic field is defined by the shape of the boundary

\[\mathbf{B} = \nabla V \]
\[\nabla^2 V = 0 \]
\[\mathbf{B} \cdot \mathbf{n} = 0 \]

Find current distribution on a surface that produces the desired interior field

Magnetic field coils

Plasma

Magnetic field line
Wendelstein 7-X

Optimisation criteria:

• good nested magnetic surfaces
• good finite-pressure equilibrium
 • minimized plasma current
• good magnetohydrodynamic stability properties
• modular coils
• small transport
Particle orbits in Wendelstein 7-X
Wendelstein 7-X

Plasma volume ~ 30 m³
- major radius 5.5 m
- effective minor radius 0.55 m

Magnetic field 3 T
- magnetic energy 900 MJ

Superconducting coils
- 50 non-planar coils
- 20 planar coils

Pulse duration 30 minutes

Heating systems
- 8 MW ECRH (140 GHz)
- 5-10 MW NBI
- 2 MW ICRH (35 MHz)

Actively cooled plasma facing components
- up to 10 MW/m²
Wendelstein 7-X from inside out

Shape of the magnetic surface from optimisation
Heat-load target elements

Actively cooled target elements: 10 MW/m²
Heat-load target elements

Actively cooled target elements: 10 MW/m²
Plasma vacuum vessel

Vacuum ~ 10^{-6} mbar

Development of welding technologies for 3D-shaped vessel
Magnetic field coils

Magnetic field 3T (7T)
Superconducting non-planar coils with cable-in-conduit conductor (NbTi)
Coil support structure

High precision ~ mm
Large forces ~ 100 t
Cryostat vessel

Cryogenic temperatures (LHe)
Assembly 2011
Visualising magnetic field lines

- Evacuated plasma vessel \(<10^{-5}\) mbar and magnetic field of \(>50\) mT

- Cathode inserted to emit electron beam along the magnetic field

- Optical detection of the e-beam by interaction with
 - background gas
 - fluorescent rod intersecting the beam: Poincaré-plot

- Sweeping electron emitter and fluorescent rod detector
Magnetic field lines: July 2015

Electron beam propagates ~ 1.5 km around the torus

- Emission from N$_2$ and H$_2$O
- Field components measured to an accuracy of 10$^{-5}$
Fusion triple product

- Figure of merit for fusion plasmas:

![Graph showing the figure of merit for fusion plasmas with data points labeled for late 2017 and late 2018. The graph includes various symbols representing different experiments such as JT-60, JET, TFTR, DIII-D, EAST, KSTAR, Tore Supra, LHD, W7-X, and NSTX. The x-axis represents the duration (s) ranging from 0.1 to 10^8, and the y-axis shows the product of n_i(0)T_i(0)/n_e(1keV-m^-3-s). The graph also includes time references such as hour, day, month, and year.]
Summary

• Quest for fusion energy dominated by two concepts
 • Tokamak (axisymmetric, leading contender)
 • Stellarator (3D, trying to catch up)

• ITER should demonstrate net energy gain (Q>10) in the tokamak

• Other superconducting tokamaks underway
 • Japan, China, Korea
 • MIT

• Wendelstein 7-X will test stellarator optimisation on a smaller scale.
 • First results promising