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New York Times, 25 March 1951
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PERON ANNOUNCES NEW WAY TO MAKE ATOM YIELD POWER

• Reports Argentina has devised thermonuclear reaction that does not use
uranium

• News conference by Argentinian dictator Juan Peron:

• Argentina had built a fusion pilot plant

• The reaction required “enormously high temperatures of millions of degrees“

• Met with skepticism from Fermi and other leading physicists



Lyman Spitzer Jr, 1914-1997
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• Head of Princeton Astrophysics (36)

• Pioneered the study of the interstellar medium



Magnetic confinement
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without magnetic field

with magnetic field

ions
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Motion in an inhomogenous magnetic field
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• If B varies slowly on the length scale of the gyroradius r

the particles drift slowly across the field

• Lagrangian (Taylor 1964) 

¹ =
mv2?
2B

= adiabatic invariant



The tokamak
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Usually credited to Tamm and Sakharov (1951), but also conceived by others
(Spitzer, Schlüter, …).  



The tokamak
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Mirroring
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Spitzer‘s first idea
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The classical stellarator
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The classical stellarator
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Content slide w/o machine logo
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• “Unwrap“ the surface, and plot consider the field lines:

• The rotational transform is defined as the winding number

j = toroidal angle
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Ampère‘s law
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Analogy to hydrodynamics
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MHD equation of motion:

Equilibrium without flow:

Compare with hydrodynamics:

Stationary flows satisfy:



Analogy to hydrodynamics
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Isomorphism:

Magnetic field lines may twist in the absence of current.

Fluid streamlines may twist in the absence of vorticity. 



First stellarator
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• Achieved T = 0.5 MK



Tokamak breakthrough: 1968
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IAEA Fusion Energy Conference, 
Novosibirsk 1968:

• Soviet tokamak programme
• Te up to 1 keV!

First dismissed, but later confirmed
by UK scientists.



Tokamak geneology
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ITER

22

• Built in CEA Cadarache

• 1st Plasma: 2025

• EU, USA, China, India, Japan, 
South Korea, Russia

12m
Parameters

R [m] 6,2

a [m] 2,0

TPuls [s]                                       300

PFusion [MW]                              500

Energy multiplication (Q)  > 10

Cost [Mrd €]         15



The fusion triple product
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Let n = density, T = temperature, t = energy confinement time

Energy density ~ nT

Rate of collisions ~ n2

Fusion yield per collision ~ T2

Energy production > energy loss if n2 T2 > nT/t

nTt > 5 atmosphere seconds

Thus we need
high density
high temperature (~100 million degrees)
long confinement time



Progress
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Progress
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Confinement time
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European Fusion Experiment JET (Joint European Torus)

• Largest and most successful fusion experiment in the world

• Collaborative EU project in Culham near Oxford

• Start of construction in 1978; in use since 1983

• 16 MW fusion power with effiency of 0.64 for about 1 sec

• 4 MW fusion power with efficincy of 0.2, for about 5 sec.

• Temperatures up to 400 Million ºC

• Discharges up to 1 Minute

• Plasma current up to 7 Million Amperes



The Tokamak JET from the outside



Inside JET



JET: the world‘s largest tokamak (still)
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Some tokamak theory
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Consider a tokamak with inverse aspect ratio

The magnetic field is then approximately toroidal

Particles at q = p/2 are trapped if



Random walk and diffusion
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If random steps are taken with

the result after a large number of steps is diffusion. 

The distribution function satisfies

where



Neoclassical transport
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Banana orbits in a tokamak

Effective collision frequency for trapped particles:

• enhanced because velocity vector needs only be scattered slightly

dr



Neoclassical transport in tokamaks
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Random-walk estimate

Proper theory obtained by solving the drift kinetic equation by expansion in

Particle flux

fraction of trapped particles
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@t
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Neoclassical transport (of electrons) in stellarators
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Random walk due to bad orbits:

– Step length

– Time between steps

– Diffusion coefficient

– Large at high temperatures, since



Other collisionality regimes
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Stability
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• Economy of magnetic
confinement measured by

• Usually limited in tokamaks to a few
percent. 

• Toroidal plasma current limited by
kink modes

• Disruptions when the density or
current becomes too large.

From Fusion Physics, IAEA 2012



Tokamak disruptions
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• A stability limit is reached.

• Plasma interacts with wall and cools 

quickly.

• Resistivity increases, h~Te
-3/2

• Large electric field is induced, trying to 

maintain the plasma current.

• Runaway electrons are generated, which

– are accelerated to ~20 MeV.

– carry much of the original current.

– usually hit the wall => hard X-rays.

– can cause serious damage.

– occasionally remain in the cool plasma (~ 

10 eV) for several s.

(JET: Gill et al, Nucl. Fusion, 2000)



Pressure limit in stellarators
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The pressure is limited by equilibrium, not stability
Shafranov shift
Ergodisation

No disruptions

No Greenwald density limit
ne(0) up to 1021m-3 in LHD



Challenges
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• Stability: when the pressure or current is high enough, the plasma
tends to become unstable

• require strong magnetic fields

• Turbulence: limits the energy confinement for a device of given size

• need strong magnetic field or large device

• Power loading: high volume to area ratio leads to high wall heat flux.

• Neutron activation: materials must withstand high neutron fluxes



Optimisation
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Magnetic field 

coils
Plasma Magnetic field line

The (vacuum) magnetic field 

is defined by the shape of 

the boundary 

Find current distribution on a surface
that produces the desired interior field



Wendelstein 7-X
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Optimisation criteria:

• good nested magnetic surfaces

• good finite-pressure equilibrium
• minimized plasma current

• good magnetohydrodynamic stability properties

• modular coils 

• small transport



Particle orbits in Wendelstein 7-X
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Wendelstein 7-X
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Plasma volume ~ 30 m3

• major radius 5.5 m

• effective minor radius 0.55 m

Magnetic field 3 T

• magnetic energy 900 MJ

Superconducting coils

• 50 non-planar coils

• 20 planar coils

Pulse duration 30 minutes

Heating systems

• 8 MW ECRH (140 GHz)

• 5-10 MW NBI

• 2 MW ICRH (35 MHz)

Actively cooled plasma

facing components

• up to 10 MW/m2



Wendelstein 7-X from inside out
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Shape of the magnetic surface 

from optimisation 



Heat-load target elements
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Actively cooled target elements: 10 MW/m2



Heat-load target elements
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Actively cooled target elements: 10 MW/m2



Plasma vacuum vessel
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Vacuum ~ 10-6 mbar

Development of welding 

technologies for 3D-shaped vessel 



Magnetic field coils
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Magnetic field 3T (7T)

Superconducting non-planar coils with 

cable-in-conduit conductor (NbTi)



Coil support structure
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High precision ~ mm

Large forces ~ 100 t



Cryostat vessel
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Cryogenic  temperatures (LHe)



Assembly 2011
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Inside
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October 2015
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Visualising magnetic field lines
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• Evacuated plasma vessel <10-5 mbar
and magnetic field of >50 mT

• Cathode inserted to emit electron beam 
along the magnetic field

• Optical detection of the e-beam by 
interaction with

 background gas

 fluorescent rod intersecting the beam: 
Poincaré-plot

• Sweeping electron emitter and fluorescent 
rod detector

Electron beam parallel/ 

anti-parallel to field line

Poincaré-plot

(detector 

plane)



Magnetic field lines: July 2015
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Electron beam propagates ~ 1.5 km around the torus

• Emission from N2 and H2O
• Field components measured to an accuracy of 10-5



Fusion triple product
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• Figure of merit for fusion plasmas:

Late 2017
Late 2018



Summary
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• Quest for fusion energy dominated by two
concepts
• Tokamak (axisymmetric, leading contender)

• Stellarator (3D, trying to catch up)

• ITER should demonstrate net energy gain
(Q>10) in the tokamak

• Other superconducting tokmaks underway
• Japan, China, Korea

• MIT

• Wendelstein 7-X will test stellarator
optimisation on a smaller scale. 

• First results promising


